Unknown

Dataset Information

0

Intra-host variation and evolutionary dynamics of SARS-CoV-2 populations in COVID-19 patients.


ABSTRACT:

Background

Since early February 2021, the causative agent of COVID-19, SARS-CoV-2, has infected over 104 million people with more than 2 million deaths according to official reports. The key to understanding the biology and virus-host interactions of SARS-CoV-2 requires the knowledge of mutation and evolution of this virus at both inter- and intra-host levels. However, despite quite a few polymorphic sites identified among SARS-CoV-2 populations, intra-host variant spectra and their evolutionary dynamics remain mostly unknown.

Methods

Using high-throughput sequencing of metatranscriptomic and hybrid captured libraries, we characterized consensus genomes and intra-host single nucleotide variations (iSNVs) of serial samples collected from eight patients with COVID-19. The distribution of iSNVs along the SARS-CoV-2 genome was analyzed and co-occurring iSNVs among COVID-19 patients were identified. We also compared the evolutionary dynamics of SARS-CoV-2 population in the respiratory tract (RT) and gastrointestinal tract (GIT).

Results

The 32 consensus genomes revealed the co-existence of different genotypes within the same patient. We further identified 40 intra-host single nucleotide variants (iSNVs). Most (30/40) iSNVs presented in a single patient, while ten iSNVs were found in at least two patients or identical to consensus variants. Comparing allele frequencies of the iSNVs revealed a clear genetic differentiation between intra-host populations from the respiratory tract (RT) and gastrointestinal tract (GIT), mostly driven by bottleneck events during intra-host migrations. Compared to RT populations, the GIT populations showed a better maintenance and rapid development of viral genetic diversity following the suspected intra-host bottlenecks.

Conclusions

Our findings here illustrate the intra-host bottlenecks and evolutionary dynamics of SARS-CoV-2 in different anatomic sites and may provide new insights to understand the virus-host interactions of coronaviruses and other RNA viruses.

SUBMITTER: Wang Y 

PROVIDER: S-EPMC7898256 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-SCDT-EMM-2022-15904 | biostudies-other
| S-SCDT-10_15252-EMBR_202256055 | biostudies-other
| S-EPMC7372253 | biostudies-literature
2021-06-19 | E-MTAB-10442 | biostudies-arrayexpress
2023-01-11 | GSE196456 | GEO
| S-EPMC7256558 | biostudies-literature
| S-EPMC8425778 | biostudies-literature
| S-EPMC8500031 | biostudies-literature