Unknown

Dataset Information

0

Evolution of Protein-Mediated Biomineralization in Scleractinian Corals.


ABSTRACT: While recent strides have been made in understanding the biological process by which stony corals calcify, much remains to be revealed, including the ubiquity across taxa of specific biomolecules involved. Several proteins associated with this process have been identified through proteomic profiling of the skeletal organic matrix (SOM) extracted from three scleractinian species. However, the evolutionary history of this putative "biomineralization toolkit," including the appearance of these proteins' throughout metazoan evolution, remains to be resolved. Here we used a phylogenetic approach to examine the evolution of the known scleractinians' SOM proteins across the Metazoa. Our analysis reveals an evolutionary process dominated by the co-option of genes that originated before the cnidarian diversification. Each one of the three species appears to express a unique set of the more ancient genes, representing the independent co-option of SOM proteins, as well as a substantial proportion of proteins that evolved independently. In addition, in some instances, the different species expressed multiple orthologous proteins sharing the same evolutionary history. Furthermore, the non-random clustering of multiple SOM proteins within scleractinian-specific branches suggests the conservation of protein function between distinct species for what we posit is part of the scleractinian "core biomineralization toolkit." This "core set" contains proteins that are likely fundamental to the scleractinian biomineralization mechanism. From this analysis, we infer that the scleractinians' ability to calcify was achieved primarily through multiple lineage-specific protein expansions, which resulted in a new functional role that was not present in the parent gene.

SUBMITTER: Zaquin T 

PROVIDER: S-EPMC7902050 | biostudies-literature | 2021

REPOSITORIES: biostudies-literature

altmetric image

Publications

Evolution of Protein-Mediated Biomineralization in Scleractinian Corals.

Zaquin Tal T   Malik Assaf A   Drake Jeana L JL   Putnam Hollie M HM   Mass Tali T  

Frontiers in genetics 20210202


While recent strides have been made in understanding the biological process by which stony corals calcify, much remains to be revealed, including the ubiquity across taxa of specific biomolecules involved. Several proteins associated with this process have been identified through proteomic profiling of the skeletal organic matrix (SOM) extracted from three scleractinian species. However, the evolutionary history of this putative "biomineralization toolkit," including the appearance of these prot  ...[more]

Similar Datasets

| S-EPMC5572714 | biostudies-literature
| S-EPMC1218179 | biostudies-other
2012-11-22 | GSE37279 | GEO
2012-11-22 | E-GEOD-37279 | biostudies-arrayexpress
| S-EPMC3479799 | biostudies-literature
| S-EPMC2900674 | biostudies-literature
| S-EPMC3469353 | biostudies-literature
| S-EPMC8302493 | biostudies-literature
| S-EPMC4216011 | biostudies-literature
| S-EPMC7693180 | biostudies-literature