Ontology highlight
ABSTRACT: Background
Frailty is an important clinical concern for the aging population of people living with HIV (PLWH). The objective of this study was to identify the combination of risk features that distinguish frail from nonfrail individuals.Setting
Machine learning analysis of highly dimensional risk features was performed on a clinical cohort of PLWH.Methods
Participants included 105 older (average age = 55.6) PLWH, with at least a 3-month history of combination antiretroviral therapy (median CD4 = 546). Predictors included demographics, HIV clinical markers, comorbid health conditions, cognition, and neuroimaging (ie, volumetrics, resting-state functional connectivity, and cerebral blood flow). Gradient-boosted multivariate regressions were implemented to establish linear and interactive classification models. Model performance was determined by sensitivity/specificity (F1 score) with 5-fold cross validation.Results
The linear gradient-boosted multivariate regression classifier included lower current CD4 count, lower psychomotor performance, and multiple neuroimaging indices (volumes, network connectivity, and blood flow) in visual and motor brain systems (F1 score = 71%; precision = 84%; and sensitivity = 66%). The interactive model identified novel synergies between neuroimaging features, female sex, symptoms of depression, and current CD4 count.Conclusions
Data-driven algorithms built from highly dimensional clinical and brain imaging features implicate disruption to the visuomotor system in older PLWH designated as frail individuals. Interactions between lower CD4 count, female sex, depressive symptoms, and neuroimaging features suggest potentiation of risk mechanisms. Longitudinal data-driven studies are needed to guide clinical strategies capable of preventing the development of frailty as PLWH reach advanced age.
SUBMITTER: Paul RH
PROVIDER: S-EPMC7903919 | biostudies-literature | 2020 Aug
REPOSITORIES: biostudies-literature
Paul Robert H RH Cho Kyu S KS Luckett Patrick P Strain Jeremy F JF Belden Andrew C AC Bolzenius Jacob D JD Navid Jaimie J Garcia-Egan Paola M PM Cooley Sarah A SA Wisch Julie K JK Boerwinkle Anna H AH Tomov Dimitre D Obosi Abel A Mannarino Julie A JA Ances Beau M BM
Journal of acquired immune deficiency syndromes (1999) 20200801 4
<h4>Background</h4>Frailty is an important clinical concern for the aging population of people living with HIV (PLWH). The objective of this study was to identify the combination of risk features that distinguish frail from nonfrail individuals.<h4>Setting</h4>Machine learning analysis of highly dimensional risk features was performed on a clinical cohort of PLWH.<h4>Methods</h4>Participants included 105 older (average age = 55.6) PLWH, with at least a 3-month history of combination antiretrovir ...[more]