Project description:BackgroundNVX-CoV2373 (Nuvaxovid™ or the Novavax COVID-19 Vaccine, Adjuvanted), the first protein-based COVID-19 vaccine, received emergency use authorization (EUA) as a primary series/booster and is available globally. NVX-CoV2373 primary series demonstrated efficacy rates of 89.7-90.4 % and an acceptable safety profile. This article summarizes safety in adult recipients (aged ≥ 18 years) of primary series NVX-CoV2373 in four randomized placebo-controlled trials.MethodsAll participants who received NVX-CoV2373 primary series or placebo (pre-crossover) were included according to actual received treatment. The safety period was from Day 0 (first vaccination) to unblinding/receipt of EUA-approved/crossover vaccine, end of each study (EOS), or last visit date/cutoff date minus 14 days. The analysis reviewed local and systemic solicited adverse events (AEs) within 7 days after NVX-CoV2373 or placebo; unsolicited AEs from after Dose 1 to 28 days after Dose 2; serious AEs (SAEs), deaths, AEs of special interest, and vaccine-related medically attended AEs from Day 0 through end of follow-up (incidence rate per 100 person-years).FindingsPooled data from 49,950 participants (NVX-CoV2373, n = 30,058; placebo, n = 19,892) were included. Solicited reactions after any dose were more frequent in NVX-CoV2373 recipients (local, 76 %/systemic, 70 %) than placebo recipients (local, 29 %/systemic, 47 %), and were mostly of mild-to-moderate severity. Grade 3+ reactions were infrequent, with greater frequency in NVX-CoV2373 recipients (local, 6.28 %/systemic, 11.36 %) than placebo recipients (local, 0.48 %/systemic, 3.58 %). SAEs and deaths occurred with similarly low frequency in NVX-CoV2373 (SAEs: 0.91 %, deaths: 0.07 %) and placebo recipients (SAEs: 1.0 %, deaths: 0.06 %).InterpretationTo date, NVX-CoV2373 has displayed an acceptable safety profile in healthy adults.FundingSupported by Novavax, Inc.
Project description:In the last two years, the coronavirus disease 19 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a scientific and social challenge worldwide. Vaccines have been the most effective intervention for reducing virus transmission and disease severity. However, virus genetic variants are still circulating among vaccinated individuals with different symptomatology disease cases. Understanding the protective or disease associated mechanisms in vaccinated individuals is relevant to advance in vaccine development and implementation. To address this objective, serum protein profiles were characterized by quantitative proteomics and data analysis algorithms in four cohorts of vaccinated individuals uninfected and SARS-CoV-2 infected with asymptomatic, nonsevere and severe disease symptomatology. The results showed that immunoglobulins were the most overrepresented proteins in infected cohorts when compared to PCR-negative individuals. The immunoglobulin profile varied between different infected cohorts and correlated with protective or disease associated capacity. Overrepresented immunoglobulins in PCR-positive individuals correlated with protective response against SARS-CoV-2, other viruses, and thrombosis in asymptomatic cases. In nonsevere cases, correlates of protection against SARS-CoV-2 and HBV together with risk of myasthenia gravis and allergy and autoantibodies were observed. Patients with severe symptoms presented risk for allergy, chronic idiopathic thrombocytopenic purpura, and autoantibodies. The analysis of underrepresented immunoglobulins in PCR-positive compared to PCR-negative individuals identified vaccine-induced protective epitopes in various coronavirus proteins including the Spike receptor-binding domain RBD. Non-immunoglobulin proteins were associated with COVID-19 symptoms and biological processes. These results evidence host-associated differences in response to vaccination and the possibility of improving vaccine efficacy against SARS-CoV-2.
Project description:The SARS-CoV-2 Delta (B.1.617.2) variant is capable of infecting vaccinated persons. An open question remains as to whether deficiencies in specific vaccine-elicited immune responses result in susceptibility to vaccine breakthrough infection. We investigated 55 vaccine breakthrough infection cases (mostly Delta) in Singapore, comparing them against 86 vaccinated close contacts who did not contract infection. Vaccine breakthrough cases showed lower memory B cell frequencies against SARS-CoV-2 receptor binding domain (RBD). Compared to plasma antibodies, antibodies secreted by memory B cells retained a higher fraction of neutralizing properties against the Delta variant. Inflammatory cytokines including IL-1β and TNF were lower in vaccine breakthrough infections than primary infection of similar disease severity, underscoring the usefulness of vaccination in preventing inflammation. This report highlights the importance of memory B cells against vaccine breakthrough, and suggests that lower memory B cell levels may be a correlate of risk for Delta vaccine breakthrough infection.
Project description:The ORCHID (Outcomes Related to COVID-19 treated with Hydroxychloroquine among In-patients with symptomatic Disease) trial is a multicenter, blinded, randomized trial of hydroxychloroquine versus placebo for the treatment of adults hospitalized with coronavirus disease (COVID-19). This document provides the rationale and background for the trial and highlights key design features. We discuss five novel challenges to the design and conduct of a large, multicenter, randomized trial during a pandemic, including 1) widespread, off-label use of the study drug before the availability of safety and efficacy data; 2) the need to adapt traditional procedures for documentation of informed consent during an infectious pandemic; 3) developing a flexible and robust Bayesian analysis incorporating significant uncertainty about the disease, outcomes, and treatment; 4) obtaining indistinguishable drug and placebo without delaying enrollment; and 5) rapidly obtaining administrative and regulatory approvals. Our goals in describing how the ORCHID trial progressed from study conception to enrollment of the first patient in 15 days are to inform the development of other high-quality, multicenter trials targeting COVID-19. We describe lessons learned to improve the efficiency of future clinical trials, particularly in the setting of pandemics. The ORCHID trial will provide high-quality, clinically relevant data on the safety and efficacy of hydroxychloroquine for the treatment of COVID-19 among hospitalized adults.Clinical trial registered with www.clinicaltrials.gov (NCT04332991).
Project description:Blood collected from adults pre vaccination and post vaccination to study the immune effects of COVID-19 vaccination and how they relate to antibody and T-cell responses.
Project description:ImportanceAdverse events (AEs) after placebo treatment are common in randomized clinical drug trials. Systematic evidence regarding these nocebo responses in vaccine trials is important for COVID-19 vaccination worldwide especially because concern about AEs is reported to be a reason for vaccination hesitancy.ObjectiveTo compare the frequencies of AEs reported in the placebo groups of COVID-19 vaccine trials with those reported in the vaccine groups.Data sourcesFor this systematic review and meta-analysis, the Medline (PubMed) and Cochrane Central Register of Controlled Trials (CENTRAL) databases were searched systematically using medical subheading terms and free-text keywords for trials of COVID-19 vaccines published up to July 14, 2021.Study selectionRandomized clinical trials of COVID-19 vaccines that investigated adults aged 16 years or older were selected if they assessed solicited AEs within 7 days of injection, included an inert placebo arm, and provided AE reports for both the vaccine and placebo groups separately. Full texts were reviewed for eligibility by 2 independent reviewers.Data extraction and synthesisData extraction and quality assessment were performed independently by 2 reviewers, adhering to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guideline and using the Cochrane risk-of-bias tool. Meta-analyses were based on random-effects models.Main outcomes and measuresThe primary outcomes were the proportions of placebo recipients reporting overall, systemic, and local (injection-site) AEs as well as logarithmic odds ratios (ORs) to evaluate group differences. Outcomes were tested for significance using z tests with 95% CIs.ResultsTwelve articles with AE reports for 45 380 participants (22 578 placebo recipients and 22 802 vaccine recipients) were analyzed. After the first dose, 35.2% (95% CI, 26.7%-43.7%) of placebo recipients experienced systemic AEs, with headache (19.3%; 95% CI, 13.6%-25.1%) and fatigue (16.7%; 95% CI, 9.8%-23.6%) being most common. After the second dose, 31.8% (95% CI, 28.7%-35.0%) of placebo recipients reported systemic AEs. The ratio between placebo and vaccine arms showed that nocebo responses accounted for 76.0% of systemic AEs after the first COVID-19 vaccine dose and for 51.8% after the second dose. Significantly more vaccine recipients reported AEs, but the group difference for systemic AEs was small after the first dose (OR, -0.47; 95% CI, -0.54 to -0.40; P < .001; standardized mean difference, -0.26; 95% CI, -0.30 to -0.22) and large after the second dose (OR, -1.36; 95% CI, -1.86 to -0.86; P < .001; standardized mean difference, -0.75; 95% CI, -1.03 to -0.47).Conclusions and relevanceIn this systematic review and meta-analysis, significantly more AEs were reported in vaccine groups compared with placebo groups, but the rates of reported AEs in the placebo arms were still substantial. Public vaccination programs should consider these high rates of AEs in placebo arms.