Unknown

Dataset Information

0

Deep Learning-Based Cattle Vocal Classification Model and Real-Time Livestock Monitoring System with Noise Filtering.


ABSTRACT: The priority placed on animal welfare in the meat industry is increasing the importance of understanding livestock behavior. In this study, we developed a web-based monitoring and recording system based on artificial intelligence analysis for the classification of cattle sounds. The deep learning classification model of the system is a convolutional neural network (CNN) model that takes voice information converted to Mel-frequency cepstral coefficients (MFCCs) as input. The CNN model first achieved an accuracy of 91.38% in recognizing cattle sounds. Further, short-time Fourier transform-based noise filtering was applied to remove background noise, improving the classification model accuracy to 94.18%. Categorized cattle voices were then classified into four classes, and a total of 897 classification records were acquired for the classification model development. A final accuracy of 81.96% was obtained for the model. Our proposed web-based platform that provides information obtained from a total of 12 sound sensors provides cattle vocalization monitoring in real time, enabling farm owners to determine the status of their cattle.

SUBMITTER: Jung DH 

PROVIDER: S-EPMC7911430 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC9678292 | biostudies-literature
| S-EPMC7218064 | biostudies-literature
| S-EPMC9356044 | biostudies-literature
| S-EPMC8976108 | biostudies-literature
| S-EPMC10245361 | biostudies-literature
| S-EPMC10946151 | biostudies-literature
| S-EPMC7248740 | biostudies-literature
| S-EPMC6191693 | biostudies-literature
2022-12-22 | GSE218466 | GEO
| S-EPMC7732702 | biostudies-literature