Ontology highlight
ABSTRACT: Background
Transplantation of bone marrow-derived mesenchymal stem cells (BM-MSCs) embedded in a bio-compatible matrix has been demonstrated as a promising strategy for the treatment of bone defects. This study was designed to explore the effect and mechanism of exosomes derived from mature dendritic cells (mDC-Exo) on the BM-MSCs-mediated bone regeneration using the matrix support in an athymic rat model of femoral bone defect.Methods
The BM-MSCs were isolated from rats and incubated with osteoblast induction medium, exosomes derived from immature DCs (imDC-Exo), mDC-Exo, and miR-335-deficient mDC-Exo. BM-MSCs treated without or with mDC-Exo were embedded in a bio-compatible matrix (Orthoss®) and then implanted into the femoral bone defect of athymic rats.Results
mDC-Exo promoted the proliferation and osteogenic differentiation of BM-MSCs by transferring miR-335. Mechanistically, exosomal miR-335 inhibited Hippo signaling by targeting large tongue suppressor kinase 1 (LATS1) and thus promoted the proliferation and osteogenic differentiation of BM-MSCs. Animal experiments showed that mDC-Exo enhanced BM-MSCs-mediated bone regeneration after bone defect, and this effect was abrogated when miR-335 expression was inhibited in mDC-Exo.Conclusion
mDC-Exo promoted osteogenic differentiation of BM-MSCs and enhanced BM-MSCs-mediated bone regeneration after femoral bone defect in athymic rats by transferring miR-335.
SUBMITTER: Cao Z
PROVIDER: S-EPMC7913386 | biostudies-literature | 2021 Feb
REPOSITORIES: biostudies-literature
Cao Zhongliu Z Wu Yanfeng Y Yu Lingling L Zou Lingfeng L Yang Liu L Lin Sijian S Wang Jue J Yuan Zhen Z Dai Jianghua J
Molecular medicine (Cambridge, Mass.) 20210226 1
<h4>Background</h4>Transplantation of bone marrow-derived mesenchymal stem cells (BM-MSCs) embedded in a bio-compatible matrix has been demonstrated as a promising strategy for the treatment of bone defects. This study was designed to explore the effect and mechanism of exosomes derived from mature dendritic cells (mDC-Exo) on the BM-MSCs-mediated bone regeneration using the matrix support in an athymic rat model of femoral bone defect.<h4>Methods</h4>The BM-MSCs were isolated from rats and incu ...[more]