Peroxidized Linoleic Acid, 13-HPODE, Alters Gene Expression Profile in Intestinal Epithelial Cells.
Ontology highlight
ABSTRACT: Lipid peroxides (LOOHs) abound in processed food and have been implicated in the pathology of diverse diseases including gut, cardiovascular, and cancer diseases. Recently, RNA Sequencing (RNA-seq) has been widely used to profile gene expression. To characterize gene expression and pathway dysregulation upon exposure to peroxidized linoleic acid, we incubated intestinal epithelial cells (Caco-2) with 100 µM of 13-hydroperoxyoctadecadienoic acid (13-HPODE) or linoleic acid (LA) for 24 h. Total RNA was extracted for library preparation and Illumina HiSeq sequencing. We identified 3094 differentially expressed genes (DEGs) in 13-HPODE-treated cells and 2862 DEGs in LA-treated cells relative to untreated cells. We show that 13-HPODE enhanced lipid metabolic pathways, including steroid hormone biosynthesis, PPAR signaling, and bile secretion, which alter lipid uptake and transport. 13-HPODE and LA treatments promoted detoxification mechanisms including cytochrome-P450. Conversely, both treatments suppressed oxidative phosphorylation. We also show that both treatments may promote absorptive cell differentiation and reduce proliferation by suppressing pathways involved in the cell cycle, DNA synthesis/repair and ribosomes, and enhancing focal adhesion. A qRT-PCR analysis of representative DEGs validated the RNA-seq analysis. This study provides insights into mechanisms by which 13-HPODE alters cellular processes and its possible involvement in mitochondrial dysfunction-related disorders and proposes potential therapeutic strategies to treat LOOH-related pathologies.
SUBMITTER: Faizo N
PROVIDER: S-EPMC7913489 | biostudies-literature | 2021 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA