Ontology highlight
ABSTRACT: Background
Rheumatoid arthritis (RA) is an autoimmune disease characterized by tumor-like hyperplasia and inflammation of the synovium, which causes synovial cell invasion into the bone and cartilage. In RA pathogenesis, various molecules in effector cells (i.e., immune cells and mesenchymal cells) are dysregulated by genetic and environmental factors. Synovial fibroblasts (SFs), the most abundant resident mesenchymal cells in the synovium, are the major local effectors of the destructive joint inflammation and exert their effects through the pathogenic production of molecules such as interleukin-6.Main body
To date, more than 100 RA susceptibility loci have been identified in genome-wide association studies (GWASs), and finding novel therapeutic targets utilizing genome analysis is considered a promising approach because some candidate causal genes identified by GWASs have previously been established as therapeutic targets. For further exploration of RA-responsible cells and cell type-specific therapeutic targets, integrated analysis (or functional genome analysis) of the genome and intermediate traits (e.g., transcriptome and epigenome) is crucial.Conclusion
This review builds on the existing knowledge regarding the epigenomic abnormalities in RASFs and discusses the recent advances in single-cell analysis, highlighting the prospects of SFs as targets for safer and more effective therapies against RA.
SUBMITTER: Tsuchiya H
PROVIDER: S-EPMC7919303 | biostudies-literature | 2021 Mar
REPOSITORIES: biostudies-literature
Tsuchiya Haruka H Ota Mineto M Fujio Keishi K
Inflammation and regeneration 20210301 1
<h4>Background</h4>Rheumatoid arthritis (RA) is an autoimmune disease characterized by tumor-like hyperplasia and inflammation of the synovium, which causes synovial cell invasion into the bone and cartilage. In RA pathogenesis, various molecules in effector cells (i.e., immune cells and mesenchymal cells) are dysregulated by genetic and environmental factors. Synovial fibroblasts (SFs), the most abundant resident mesenchymal cells in the synovium, are the major local effectors of the destructiv ...[more]