Unknown

Dataset Information

0

Molecular understanding of heteronuclear active sites in heme-copper oxidases, nitric oxide reductases, and sulfite reductases through biomimetic modelling.


ABSTRACT: Heme-copper oxidases (HCO), nitric oxide reductases (NOR), and sulfite reductases (SiR) catalyze the multi-electron and multi-proton reductions of O2, NO, and SO32-, respectively. Each of these reactions is important to drive cellular energy production through respiratory metabolism and HCO, NOR, and SiR evolved to contain heteronuclear active sites containing heme/copper, heme/nonheme iron, and heme-[4Fe-4S] centers, respectively. The complexity of the structures and reactions of these native enzymes, along with their large sizes and/or membrane associations, make it challenging to fully understand the crucial structural features responsible for the catalytic properties of these active sites. In this review, we summarize progress that has been made to better understand these heteronuclear metalloenzymes at the molecular level though study of the native enzymes along with insights gained from biomimetic models comprising either small molecules or proteins. Further understanding the reaction selectivity of these enzymes is discussed through comparisons of their similar heteronuclear active sites, and we offer outlook for further investigations.

SUBMITTER: Reed CJ 

PROVIDER: S-EPMC7920998 | biostudies-literature | 2021 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Molecular understanding of heteronuclear active sites in heme-copper oxidases, nitric oxide reductases, and sulfite reductases through biomimetic modelling.

Reed Christopher J CJ   Lam Quan N QN   Mirts Evan N EN   Lu Yi Y  

Chemical Society reviews 20210301 4


Heme-copper oxidases (HCO), nitric oxide reductases (NOR), and sulfite reductases (SiR) catalyze the multi-electron and multi-proton reductions of O2, NO, and SO32-, respectively. Each of these reactions is important to drive cellular energy production through respiratory metabolism and HCO, NOR, and SiR evolved to contain heteronuclear active sites containing heme/copper, heme/nonheme iron, and heme-[4Fe-4S] centers, respectively. The complexity of the structures and reactions of these native e  ...[more]

Similar Datasets

| S-EPMC6696091 | biostudies-literature
| S-EPMC3084760 | biostudies-literature
| S-EPMC3203783 | biostudies-literature
| S-EPMC4252355 | biostudies-literature
| S-EPMC3507325 | biostudies-literature
| S-EPMC6078787 | biostudies-literature
| S-EPMC7196763 | biostudies-literature
| S-EPMC2613019 | biostudies-literature
| S-EPMC5605297 | biostudies-literature
| S-EPMC4031290 | biostudies-literature