Unknown

Dataset Information

0

Ultra-high rate of temperature increment from superparamagnetic nanoparticles for highly efficient hyperthermia.


ABSTRACT: The magneto-thermal effect, which represents the conversion of magnetostatic energy to heat from magnetic materials, has been spotlighted for potential therapeutic usage in hyperthermia treatments. However, the realization of its potential has been challenged owing to the limited heating from the magnetic nanoparticles. Here, we explored a new-concept of magneto-thermal modality marked by low-power-driven, fast resonant spin-excitation followed by consequent energy dissipation, which concept has yet to be realized for current hyperthermia applications. We investigated the effect of spin resonance-mediated heat dissipation using superparamagnetic Fe3O4 nanoparticles and achieved an extraordinary initial temperature increment rate of more than 150 K/s, which is a significant increase in comparison to that for the conventional magnetic heat induction of nanoparticles. This work would offer highly efficient heat generation and precision wireless controllability for realization of magnetic-hyperthermia-based medical treatment.

SUBMITTER: Lee JH 

PROVIDER: S-EPMC7925677 | biostudies-literature | 2021 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Ultra-high rate of temperature increment from superparamagnetic nanoparticles for highly efficient hyperthermia.

Lee Jae-Hyeok JH   Kim Bosung B   Kim Yongsub Y   Kim Sang-Koog SK  

Scientific reports 20210302 1


The magneto-thermal effect, which represents the conversion of magnetostatic energy to heat from magnetic materials, has been spotlighted for potential therapeutic usage in hyperthermia treatments. However, the realization of its potential has been challenged owing to the limited heating from the magnetic nanoparticles. Here, we explored a new-concept of magneto-thermal modality marked by low-power-driven, fast resonant spin-excitation followed by consequent energy dissipation, which concept has  ...[more]

Similar Datasets

| S-EPMC3872225 | biostudies-literature
| S-EPMC4507566 | biostudies-literature
| S-EPMC6986086 | biostudies-literature
| S-EPMC7367688 | biostudies-literature
| S-EPMC5856762 | biostudies-literature
| S-EPMC6044893 | biostudies-literature
| S-EPMC5357746 | biostudies-literature
| S-EPMC9170356 | biostudies-literature
| S-EPMC7285148 | biostudies-literature
| S-EPMC7961124 | biostudies-literature