Unknown

Dataset Information

0

Distal Bias of Meiotic Crossovers in Hexaploid Bread Wheat Reflects Spatio-Temporal Asymmetry of the Meiotic Program.


ABSTRACT: Meiotic recombination generates genetic variation and provides physical links between homologous chromosomes (crossovers) essential for accurate segregation. In cereals the distribution of crossovers, cytologically evident as chiasmata, is biased toward the distal regions of chromosomes. This creates a bottleneck for plant breeders in the development of varieties with improved agronomic traits, as genes situated in the interstitial and centromere proximal regions of chromosomes rarely recombine. Recent advances in wheat genomics and genome engineering combined with well-developed wheat cytogenetics offer new opportunities to manipulate recombination and unlock genetic variation. As a basis for these investigations we have carried out a detailed analysis of meiotic progression in hexaploid wheat (Triticum aestivum) using immunolocalization of chromosome axis, synaptonemal complex and recombination proteins. 5-Bromo-2'-deoxyuridine (BrdU) labeling was used to determine the chronology of key events in relation to DNA replication. Axis morphogenesis, synapsis and recombination initiation were found to be spatio-temporally coordinated, beginning in the gene-dense distal chromosomal regions and later occurring in the interstitial/proximal regions. Moreover, meiotic progression in the distal regions was coordinated with the conserved chromatin cycles that are a feature of meiosis. This mirroring of the chiasma bias was also evident in the distribution of the gene-associated histone marks, H3K4me3 and H3K27me3; the repeat-associated mark, H3K27me1; and H3K9me3. We believe that this study provides a cytogenetic framework for functional studies and ongoing initiatives to manipulate recombination in the wheat genome.

SUBMITTER: Osman K 

PROVIDER: S-EPMC7928317 | biostudies-literature | 2021

REPOSITORIES: biostudies-literature

altmetric image

Publications

Distal Bias of Meiotic Crossovers in Hexaploid Bread Wheat Reflects Spatio-Temporal Asymmetry of the Meiotic Program.

Osman Kim K   Algopishi Uthman U   Higgins James D JD   Henderson Ian R IR   Edwards Keith J KJ   Franklin F Chris H FCH   Sanchez-Moran Eugenio E  

Frontiers in plant science 20210212


Meiotic recombination generates genetic variation and provides physical links between homologous chromosomes (crossovers) essential for accurate segregation. In cereals the distribution of crossovers, cytologically evident as chiasmata, is biased toward the distal regions of chromosomes. This creates a bottleneck for plant breeders in the development of varieties with improved agronomic traits, as genes situated in the interstitial and centromere proximal regions of chromosomes rarely recombine.  ...[more]

Similar Datasets

2006-10-14 | GSE6027 | GEO
| S-EPMC6710277 | biostudies-literature
2008-06-14 | E-GEOD-6027 | biostudies-arrayexpress
| S-EPMC1647286 | biostudies-literature
| S-EPMC7890124 | biostudies-literature
| S-EPMC5017740 | biostudies-literature
| PRJEB28231 | ENA
2014-07-18 | E-MTAB-2137 | biostudies-arrayexpress
| S-EPMC5691383 | biostudies-literature
| S-EPMC4023595 | biostudies-literature