Project description:The mechanisms underlying development of ribonucleoprotein (RNP) autoantibodies are unclear. The U1-70K protein is the predominant target of RNP autoantibodies, and the RNA binding domain has been shown to be the immunodominant autoantigenic region of U1-70K, although the specific epitopes are not known. To precisely map U1-70K epitopes, we developed silicon-based peptide microarrays with >5700 features, corresponding to 843 unique peptides derived from the U1-70K protein. The microarrays feature overlapping peptides, with single-amino acid resolution in length and location, spanning amino acids 110-170 within the U1-70K RNA binding domain. We evaluated the serum IgG of a cohort of patients with systemic lupus erythematosus (SLE; n = 26) using the microarrays, and identified multiple reactive epitopes, including peptides 116-121 and 143-148. Indirect peptide ELISA analysis of the sera of patients with SLE (n = 88) revealed that ∼14% of patients had serum IgG reactivity to 116-121, while reactivity to 143-148 appeared to be limited to a single patient. SLE patients with serum reactivity to 116-121 had significantly lower SLE Disease Activity Index (SLEDAI) scores at the time of sampling, compared to non-reactive patients. Minimal reactivity to the peptides was observed in the sera of healthy controls (n = 92). Competitive ELISA showed antibodies to 116-121 bind a common epitope in U1-70K (68-72) and the matrix protein M1 of human influenza B viruses. Institutional Review Boards approved this study. Knowledge of the precise epitopes of U1-70K autoantibodies may provide insight into the mechanisms of development of anti-RNP, identify potential clinical biomarkers and inform ongoing clinical trails of peptide-based therapeutics.
Project description:We still know very little about how the human immune system responds to SARS-CoV-2. Here we construct a SARS-CoV-2 proteome microarray containing 18 out of the 28 predicted proteins and apply it to the characterization of the IgG and IgM antibodies responses in the sera from 29 convalescent patients. We find that all these patients had IgG and IgM antibodies that specifically bind SARS-CoV-2 proteins, particularly the N protein and S1 protein. Besides these proteins, significant antibody responses to ORF9b and NSP5 are also identified. We show that the S1 specific IgG signal positively correlates with age and the level of lactate dehydrogenase (LDH) and negatively correlates with lymphocyte percentage. Overall, this study presents a systemic view of the SARS-CoV-2 specific IgG and IgM responses and provides insights to aid the development of effective diagnostic, therapeutic and vaccination strategies.
Project description:Comprehensive profiling of humoral antibody response to severe acute respiratory syndrome (SARS) coronavirus-2 (CoV-2) proteins is essential in understanding the host immunity and in developing diagnostic tests and vaccines. To address this concern, we developed a SARS-CoV-2 proteome peptide microarray to analyze antibody interactions at the amino acid resolution. With the array, we demonstrate the feasibility of employing SARS-CoV-1 antibodies to detect the SARS-CoV-2 nucleocapsid phosphoprotein. The first landscape of B-cell epitopes for SARS-CoV-2 IgM and IgG antibodies in the serum of 10 coronavirus disease of 2019 (COVID-19) patients with early infection is also constructed. With array data and structural analysis, a peptide epitope for neutralizing antibodies within the SARS-CoV-2 spike receptor-binding domain's interaction interface with the angiotensin-converting enzyme 2 receptor was predicted. All the results demonstrate the utility of our microarray as a platform to determine the changes of antibody responses in COVID-19 patients and animal models as well as to identify potential targets for diagnosis and treatment.
Project description:One of the best ways to control COVID-19 is vaccination. Among the various SARS-CoV-2 vaccines, inactivated virus vaccines have been widely applied in China and many other countries. To understand the underlying protective mechanism of these vaccines, it is necessary to systematically analyze the humoral responses that are triggered. By utilizing a SARS-CoV-2 microarray with 21 proteins and 197 peptides that fully cover the spike protein, antibody response profiles of 59 serum samples collected from 32 volunteers immunized with the inactivated virus vaccine BBIBP-CorV were generated. For this set of samples, the microarray results correlated with the neutralization titers of the authentic virus, and two peptides (S1-5 and S2-22) were identified as potential biomarkers for assessing the effectiveness of vaccination. Moreover, by comparing immunized volunteers to convalescent and hospitalized COVID-19 patients, the N protein, NSP7, and S2-78 were identified as potential biomarkers for differentiating COVID-19 patients from individuals vaccinated with the inactivated SARS-CoV-2 vaccine. The comprehensive profile of humoral responses against the inactivated SARS-CoV-2 vaccine will facilitate a deeper understanding of the vaccine and provide potential biomarkers for inactivated virus vaccine-related applications.
Project description:The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has induced an ongoing global health crisis. Here we utilized a combination of targeted amino acids (AAs) and clinical biochemical profiling to analyze the plasma of coronavirus disease 2019 (COVID-19) subjects at the hospitalization stage and 1-month post-infection convalescent stage, respectively, to investigate the systematic injury during COVID-19 disease progress. We found the virus-induced inflammatory status and reduced liver synthesis capacity in hospitalized patients, which manifested with increased branched-chain AAs (BCAAs), aromatic AAs (AAAs), one-carbon related metabolites, and decreased methionine. Most of these disturbances during infection recover except for the increased levels of medium-chain acylcarnitines (ACs) in the convalescent subjects, implying the existence of incomplete fatty acids oxidation during recovery periods. Our results suggested that the imbalance of the AA profiling in COVID-19 patients. The majority of disturbed AAs recovered in 1 month. The incomplete fatty acid oxidation products suggested it might take longer time for convalescent patients to get complete recovery.
Project description:Coronavirus disease 2019 (COVID-19) is transmitted person-to-person mainly by close contact or droplets from respiratory tract. However, the actual time of viral shedding is still uncertain as well as the different routes of transmission. We aimed to characterize RNA shedding from nasopharyngeal and rectal samples in prolonged cases of mild COVID-19 in young male soldiers. Seventy patients from three different military locations were monitored after recommending to follow more strict isolation measures to prevent the spread of the virus. Then, nasopharyngeal, rectal, and blood samples were taken. SARS-CoV-2 RNA was detected by RT-PCR and specific antibodies by chemiluminescent immunoassays. The median nucleic acid conversion time (NACT) was 60 days (IQR: 7-85 days). Rectal swabs were taken in 60 % of patients. Seven patients (10 %) were positive in nasopharyngeal and rectal swabs, and five (7.14 %) remained positive in rectal swabs, but negative in nasopharyngeal samples. Four patients (5.71 %) that had been discharged, were positive again after 15 days. No significant difference was found in nucleic acid conversion time between age groups nor clinical classification. Maintaining distancing among different positive patients is essential as a possible re-exposure to the virus could cause a longer nucleic acid conversion time in SARS-COV-2 infections.
Project description:The coronavirus disease 19 (COVID-19) is a highly pathogenic viral infection of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), resulted in the global pandemic of 2020. A lack of therapeutic and preventive strategies has quickly posed significant threats to world health. A comprehensive understanding of SARS-CoV-2 evolution and natural selection, how it impacts host interaction, and phenotype symptoms is vital to develop effective strategies against the virus. The SARS2Mutant database (http://sars2mutant.com/) was developed to provide valuable insights based on millions of high-quality, high-coverage SARS-CoV-2 complete protein sequences. Users of this database have the ability to search for information on three amino acid substitution mutation strategies based on gene name, geographical zone, or comparative analysis. Each strategy is presented in five distinct formats which includes: (i) mutated sample frequencies, (ii) heat maps of mutated amino acid positions, (iii) mutation survivals, (iv) natural selections and (v) details of substituted amino acids, including their names, positions, and frequencies. GISAID is a primary database of genomics sequencies of influenza viruses updated daily. SARS2Mutant is a secondary database developed to discover mutation and conserved regions from the primary data to assist with design for targeted vaccine, primer, and drug discoveries.
Project description:Vaccination clearly decreases coronavirus disease 2019 (COVID-19) mortality; however, they also impose selection pressure on the virus, which promotes the evolution of immune escape variants. For example, despite the high vaccination level in especially Western countries, the Omicron variant caused millions of breakthrough infections, suggesting that the highly mutated spike protein in the Omicron variant can escape antibody immunity much more efficiently than the other variants of concern (VOCs). In this study, we investigated the resistance/susceptibility of T helper cell responses that are necessary for generating efficient long-lasting antibody immunity, in several VOCs. By predicting T helper cell epitopes on the spike protein for most common HLA-DRB1 alleles worldwide, we found that although most of high frequency HLA-DRB1 alleles have several potential T helper cell epitopes, few alleles like HLA-DRB1 13:01 and 11:01 are not predicted to have any significant T helper cell responses after vaccination. Using these predictions, a population based on realistic human leukocyte antigen-II (HLA-II) frequencies were simulated to visualize the T helper cell immunity on the population level. While a small fraction of this population had alarmingly little predicted CD4 T cell epitopes, the majority had several epitopes that should be enough to generate efficient B cell responses. Moreover, we show that VOC spike mutations hardly affect T helper epitopes and mainly occur in other residues of the spike protein. These results suggest that lack of long-lasting antibody responses is not likely due to loss of T helper cell epitopes in new VOCs.
Project description:COVID-19 antibody testing has been developed to investigate humoral immune response in SARS-CoV-2 infection. To assess the serological dynamics and neutralizing potency following SARS-CoV-2 infection, we investigated the neutralizing (NT) antibody, anti-spike, and anti-nucleocapsid antibodies responses using a total of 168 samples obtained from 68 SARS-CoV-2 infected patients. Antibodies were measured using an authentic virus neutralization assay, the high-throughput laboratory measurements of the Abbott Alinity quantitative anti-spike receptor-binding domain IgG (S-IgG), semiquantitative anti-spike IgM (S-IgM), and anti-nucleocapsid IgG (N-IgG) assays. The quantitative measurement of S-IgG antibodies was well correlated with the neutralizing activity detected by the neutralization assay (r = 0.8943, p < 0.0001). However, the kinetics of the SARS-CoV-2 NT antibody in severe cases were slower than that of anti-S and anti-N specific antibodies. These findings indicate a limitation of using the S-IgG antibody titer, detected by the chemiluminescent immunoassay, as a direct quantitative marker of neutralizing activity capacity. Antibody testing should be carefully interpreted when utilized as a marker for serological responses to facilitate diagnostic, therapeutic, and prophylactic interventions.
Project description:MotivationSARS-CoV-2 is a novel coronavirus currently causing a pandemic. Here, we performed a combined in-silico and cell culture comparison of SARS-CoV-2 and the closely related SARS-CoV.ResultsMany amino acid positions are differentially conserved between SARS-CoV-2 and SARS-CoV, which reflects the discrepancies in virus behaviour, i.e. more effective human-to-human transmission of SARS-CoV-2 and higher mortality associated with SARS-CoV. Variations in the S protein (mediates virus entry) were associated with differences in its interaction with ACE2 (cellular S receptor) and sensitivity to TMPRSS2 (enables virus entry via S cleavage) inhibition. Anti-ACE2 antibodies more strongly inhibited SARS-CoV than SARS-CoV-2 infection, probably due to a stronger SARS-CoV-2 S-ACE2 affinity relative to SARS-CoV S. Moreover, SARS-CoV-2 and SARS-CoV displayed differences in cell tropism. Cellular ACE2 and TMPRSS2 levels did not indicate susceptibility to SARS-CoV-2. In conclusion, we identified genomic variation between SARS-CoV-2 and SARS-CoV that may reflect the differences in their clinical and biological behaviour.Supplementary informationSupplementary data are available at Bioinformatics online.