Ontology highlight
ABSTRACT: Background and aim
Honey has been recognized worldwide for its antioxidant, anti-tumor, anti-inflammatory and antimicrobial properties. Among them, the antifungal properties associated to honey make it an attractive alternative treatment for Candida-associated infections, particularly for topical application to the mucous membranes and skin. In this sense, the main purpose of this work was to evaluate physicochemical properties of five Portuguese honeys and Manuka honey (an Australian honey with well recognized medical proprieties, used as control) and to evaluate the antifungal activity in Candida species planktonic and biofilm assays. Experimental procedure
Pollen analysis, pH determination, color, concentration of protein and methylglyoxal, conductivity, total phenolics and flavonoids, hydrogen peroxide concentration, and characterization by differential scanning calorimetry in honey samples were determined. Additionally, the effect of honeys on planktonic growth of Candida was initially evaluated by determination of the minimum inhibitory concentrations. Then, the same effect of those honeys was evaluated in biofilms, by Colony Forming Units enumeration. Results and conclusion
It has been shown that Portuguese heather (Erica cinereal) honey presented the most similar physicochemical properties to manuka honey (specially phenolic and flavonoids contents). The five Portuguese honeys under study, presented in general a potent activity against planktonic multi-resistant yeast pathogens (several clinical isolates and reference strains of Candida species) and S. aureus and P. aeruginosa bacteria cultures. Additionally, it was also concluded that Portuguese heather honey (50% and 75% (w/v)) can also act as a good Candida species biofilm reducer, namely for C. tropicalis. Graphical abstract Image 1 Highlights • The several physicochemical properties of five Portuguese honeys were determined.• The effect of honey on planktonic and biofilms of Candida species was assessed.• The five Portuguese honeys present in general a potent activity antimicrobial.
SUBMITTER: Fernandes L
PROVIDER: S-EPMC7936102 | biostudies-literature | 2020 Feb
REPOSITORIES: biostudies-literature