Ontology highlight
ABSTRACT: Background
Ceftolozane/tazobactam (C/T) is approved in 70 countries, including the United States, for the treatment of patients with hospital-acquired and ventilator-associated bacterial pneumonia caused by susceptible Gram-negative pathogens. C/T is of particular importance as an agent for the treatment of multidrug-resistant (MDR) Pseudomonas aeruginosa infections. The current study summarizes 2018-2019 data from the United States on lower respiratory tract isolates of Gram-negative bacilli from the SMART global surveillance program. The CLSI reference broth microdilution method was used to determine in vitro susceptibility of C/T and comparators against isolates of P. aeruginosa and Enterobacterales.Results
C/T inhibited 96.0% of P. aeruginosa (n = 1237) at its susceptible MIC breakpoint (≤4 μg/ml), including > 85% of meropenem-nonsusceptible and piperacillin/tazobactam (P/T)-nonsusceptible isolates and 76.2% of MDR isolates. Comparator agents demonstrated lower activity than C/T against P. aeruginosa: meropenem (74.8% susceptible), cefepime (79.2%), ceftazidime (78.5%), P/T (74.4%), and levofloxacin (63.1%). C/T was equally active against ICU (96.0% susceptible) and non-ICU (96.7%) isolates of P. aeruginosa. C/T inhibited 91.8% of Enterobacterales (n = 1938) at its susceptible MIC breakpoint (≤2 μg/ml); 89.5% of isolates were susceptible to cefepime and 88.0% susceptible to P/T. 67.1 and 86.5% of extended-spectrum β-lactamase (ESBL) screen-positive isolates of Klebsiella pneumoniae (n = 85) and Escherichia coli (n = 74) and 49.6% of MDR Enterobacterales were susceptible to C/T. C/T was equally active against ICU (91.3% susceptible) and non-ICU (92.6%) Enterobacterales isolates.Conclusion
Data from the current study support the use of C/T as an important treatment option for lower respiratory tract infections including those caused by MDR P. aeruginosa.
SUBMITTER: Karlowsky JA
PROVIDER: S-EPMC7936229 | biostudies-literature |
REPOSITORIES: biostudies-literature