Ontology highlight
ABSTRACT: Background
Combined methylmalonic acidemia and homocystinuria, cobalamin C type (cblC defect) is the most common inborn error of cobalamin metabolism, and different approaches have been applied to its prenatal diagnosis. To evaluate the reliability of biochemical method for the prenatal diagnosis of cblC defect, we conducted a retrospective study of our 10-year experience at a single center.Methods
248 pregnancies whose probands were diagnosed as cblC defect were referred to our center for prenatal diagnosis from January 2010 to December 2019. Prenatal data of Hcy levels determined by enzymatic cycling assay, acylcarnitine analysis using liquid chromatography tandem mass spectrometry, organic acid analysis using gas chromatography mass spectrometry, and genetic analysis by direct sequencing of 248 at-risk fetuses were retrospectively reviewed.Results
For 2.0 and 16.0 ?mol/L levels of Hcy AF samples, the relative errors were - 2.5% and 2.8%, respectively. The respective measurement uncertainties were 13.07% and 14.20%. For the 248 at-risk fetuses, 63 fetuses were affected and 185 fetuses were unaffected. Hcy level of 13.20 (6.62-43.30) ?mol/L in 63 affected fetuses was significantly higher than that in 185 unaffected fetuses of 2.70 (0.00-5.80) ?mol/L, and there was no overlap between the affected and unaffected groups. The diagnostic sensitivity and specificity of Hcy were 100% and 92.05%, respectively. The positive and negative predictive values of the combination of Hcy, propionylcarnitine (C3), ratio of C3 to acetylcarnitine (C2; C3/C2), methylmalonic acid (MMA), and methylcitric acid (MCA) were both 100%. Sixteen fetuses displayed inconclusive genetic results of MMACHC variants, in which seven fetuses were determined to be affected with elevated levels of Hcy, C3, C3/C2 and MMA, and their levels were 18.50 (6.70-43.30) ?mol/L, 8.53(5.02-11.91) ?mol/L, 0.77 (0.52-0.97), 8.96 (6.55-40.32) mmol/mol Cr, respectively. The remaining nine fetuses were considered unaffected based on a normal amniotic fluid metabolite profile.Conclusions
Hcy appears to be another characteristic biomarker for the prenatal diagnosis of cblC defect. The combination of Hcy assay with acylcarnitine and organic acid analysis is a fast, sensitive, and reliable prenatal diagnostic biochemical approach. This approach could overcome the challenge of the lack of genetic analysis for families with at-risk cblC defect fetuses.
SUBMITTER: Chen T
PROVIDER: S-EPMC7945211 | biostudies-literature | 2021 Mar
REPOSITORIES: biostudies-literature
Orphanet journal of rare diseases 20210310 1
<h4>Background</h4>Combined methylmalonic acidemia and homocystinuria, cobalamin C type (cblC defect) is the most common inborn error of cobalamin metabolism, and different approaches have been applied to its prenatal diagnosis. To evaluate the reliability of biochemical method for the prenatal diagnosis of cblC defect, we conducted a retrospective study of our 10-year experience at a single center.<h4>Methods</h4>248 pregnancies whose probands were diagnosed as cblC defect were referred to our ...[more]