Unknown

Dataset Information

0

Cerebrovascular Reactivity Measurement Using Magnetic Resonance Imaging: A Systematic Review.


ABSTRACT: Cerebrovascular reactivity (CVR) magnetic resonance imaging (MRI) probes cerebral haemodynamic changes in response to a vasodilatory stimulus. CVR closely relates to the health of the vasculature and is therefore a key parameter for studying cerebrovascular diseases such as stroke, small vessel disease and dementias. MRI allows in vivo measurement of CVR but several different methods have been presented in the literature, differing in pulse sequence, hardware requirements, stimulus and image processing technique. We systematically reviewed publications measuring CVR using MRI up to June 2020, identifying 235 relevant papers. We summarised the acquisition methods, experimental parameters, hardware and CVR quantification approaches used, clinical populations investigated, and corresponding summary CVR measures. CVR was investigated in many pathologies such as steno-occlusive diseases, dementia and small vessel disease and is generally lower in patients than in healthy controls. Blood oxygen level dependent (BOLD) acquisitions with fixed inspired CO2 gas or end-tidal CO2 forcing stimulus are the most commonly used methods. General linear modelling of the MRI signal with end-tidal CO2 as the regressor is the most frequently used method to compute CVR. Our survey of CVR measurement approaches and applications will help researchers to identify good practice and provide objective information to inform the development of future consensus recommendations.

SUBMITTER: Sleight E 

PROVIDER: S-EPMC7947694 | biostudies-literature | 2021

REPOSITORIES: biostudies-literature

altmetric image

Publications

Cerebrovascular Reactivity Measurement Using Magnetic Resonance Imaging: A Systematic Review.

Sleight Emilie E   Stringer Michael S MS   Marshall Ian I   Wardlaw Joanna M JM   Thrippleton Michael J MJ  

Frontiers in physiology 20210225


Cerebrovascular reactivity (CVR) magnetic resonance imaging (MRI) probes cerebral haemodynamic changes in response to a vasodilatory stimulus. CVR closely relates to the health of the vasculature and is therefore a key parameter for studying cerebrovascular diseases such as stroke, small vessel disease and dementias. MRI allows <i>in vivo</i> measurement of CVR but several different methods have been presented in the literature, differing in pulse sequence, hardware requirements, stimulus and im  ...[more]

Similar Datasets

| S-EPMC4853842 | biostudies-literature
| S-EPMC3824179 | biostudies-other
| S-EPMC10102759 | biostudies-literature
| S-EPMC8142144 | biostudies-literature
| S-EPMC9234754 | biostudies-literature
| S-EPMC8321322 | biostudies-literature
| S-EPMC7237958 | biostudies-literature
| S-EPMC8493836 | biostudies-literature
| S-EPMC8199590 | biostudies-literature
| S-EPMC8417590 | biostudies-literature