Project description:The accumulation of the toxic Aβ peptide in Alzheimer's disease (AD) largely relies upon an efficient recycling of amyloid precursor protein (APP). Recent genetic association studies have described rare variants in SORL1 with putative pathogenic consequences in the recycling of APP. In this work, we examine the presence of rare coding variants in SORL1 in three different European American cohorts: early-onset, late-onset AD (LOAD) and familial LOAD.
Project description:ImportanceClinical decisions are ideally based on evidence generated from multiple randomized controlled trials (RCTs) evaluating clinical outcomes, but historically, few clinical guideline recommendations have been based entirely on this type of evidence.ObjectiveTo determine the class and level of evidence (LOE) supporting current major cardiovascular society guideline recommendations, and changes in LOE over time.Data sourcesCurrent American College of Cardiology/American Heart Association (ACC/AHA) and European Society of Cardiology (ESC) clinical guideline documents (2008-2018), as identified on cardiovascular society websites, and immediate predecessors to these guideline documents (1999-2014), as referenced in current guideline documents.Study selectionComprehensive guideline documents including recommendations organized by class and LOE.Data extraction and synthesisThe number of recommendations and the distribution of LOE (A [supported by data from multiple RCTs or a single, large RCT], B [supported by data from observational studies or a single RCT], and C [supported by expert opinion only]) were determined for each guideline document.Main outcomes and measuresThe proportion of guideline recommendations supported by evidence from multiple RCTs (LOE A).ResultsAcross 26 current ACC/AHA guidelines (2930 recommendations; median, 121 recommendations per guideline [25th-75th percentiles, 76-155]), 248 recommendations (8.5%) were classified as LOE A, 1465 (50.0%) as LOE B, and 1217 (41.5%) as LOE C. The median proportion of LOE A recommendations was 7.9% (25th-75th percentiles, 0.9%-15.2%). Across 25 current ESC guideline documents (3399 recommendations; median, 130 recommendations per guideline [25th-75th percentiles, 111-154]), 484 recommendations (14.2%) were classified as LOE A, 1053 (31.0%) as LOE B, and 1862 (54.8%) as LOE C. When comparing current guidelines with prior versions, the proportion of recommendations that were LOE A did not increase in either ACC/AHA (median, 9.0% [current] vs 11.7% [prior]) or ESC guidelines (median, 15.1% [current] vs 17.6% [prior]).Conclusions and relevanceAmong recommendations in major cardiovascular society guidelines, only a small percentage were supported by evidence from multiple RCTs or a single, large RCT. This pattern does not appear to have meaningfully improved from 2008 to 2018.
Project description:Refractive errors, myopia, and hyperopia are common visual disorders greatly affecting older individuals. Refraction is determined by genetic factors but only a small percentage of its variation has been explained. We performed a genetic association analysis with three ocular phenotypes: spherical equivalent (a continous measure of refraction), axial length, and corneal curvature in 1,871 European-Americans from the Beaver Dam Eye Study. Individuals were genotyped on the Illumina exome array and imputed to the Haplotype Reference Consortium reference panel. After increasing the number of analyzed variants in targeted protein-coding regions 10-fold via imputation, we confirmed associations for two previously known loci with corneal curvature (chr4q12, rs2114039; g.55092626T > C, β = -0.03 (95% confidence interval [CI]): -0.06, -0.01, P value = 0.01) and spherical equivalent (chr15q14, rs634990; g.35006073T > C, β = -0.27, 95% CI: -0.45, -0.09, P value = 3.79 × 10-3 ). Despite increased single nucleotide polymorphism (SNP) density, we did not detect any novel significant variants after correction for multiple comparisons. In summary, we confirmed two previous loci associated with corneal curvature and spherical equivalent in a European-American population highlighting the potential biological role of those regions in these traits.
Project description:BackgroundDepression has been associated with a higher risk of Alzheimer's disease (AD) in several prospective studies; however, mechanisms underlying this association remain unclear.MethodsWe examined genetic correlation between depression and AD using linkage disequilibrium score regression. We then tested for evidence of causality between depression and AD using Mendelian randomization and genome-wide association study results. Subsequently, cis and trans quantitative trait locus analyses for the depression genome-wide association study signals were performed to resolve the genetic signals to specific DNA methylation sites, brain transcripts, and proteins. These transcripts and proteins were then examined for associations with AD and its endophenotypes. Finally, the associations between depression polygenic risk score and AD endophenotypes were examined.ResultsWe detected a significant genetic correlation between depression and AD, suggesting that they have a shared genetic basis. Furthermore, we found that depression had a causal role in AD through Mendelian randomization but did not find evidence for a causal role of AD on depression. Moreover, we identified 75 brain transcripts and 28 brain proteins regulated by the depression genome-wide association study signals through quantitative trait locus analyses. Of these, 46 transcripts and seven proteins were associated with rates of cognitive decline over time, AD pathologies, and AD diagnosis in two separate cohorts, thus implicating them in AD. In addition, we found that a higher depression polygenic risk score was associated with a faster decline of episodic memory over time.ConclusionsDepression appears to have a causal role in AD, and this causal relationship is likely driven, in part, by the 53 brain transcripts and proteins identified in this study.
Project description:MicroRNAs (miRNAs) are an integral part of the post-transcriptional machinery of gene expression and have been implicated in the carcinogenic cascade. Single nucleotide polymorphisms (SNPs) in miRNAs and risk of breast cancer have been evaluated in populations of European or Asian ancestry, but not among women of African ancestry. Here we examined 145 SNPs in six miRNA processing genes and in 78 miRNAs which target genes known to be important in breast cancer among 906 African American (AA) and 653 European American (EA) cases and controls enrolled in the Women's Circle of Health Study. Allele frequencies of most SNPs (87 %) differed significantly by race. We found a number of SNPs in miRNAs and processing genes in association with breast cancer overall or stratified by estrogen receptor (ER) status. Several associations were significantly different by race, with none of the associations being significant in both races. Using a polygenic risk score to combine the effects of multiple SNPs, we found significant associations with the score in each subgroup analysis. For ER-positive cancer, each unit increment of the risk score was associated with a 51 % increased risk in AAs (OR = 1.51, 95 % CI = 1.30-1.74, p = 3.3 × 10(-8)) and a 73 % increased risk in EAs (OR = 1.73, 95 % CI = 1.45-2.06, p = 1.4 × 10(-9)). These data show, for the first time, that miRNA-related genetic variations may underlie the etiology of breast cancer in both populations of African and European ancestries. Future studies are needed to validate our findings and to explore the underlying mechanisms.
Project description:Glycated hemoglobin (HbA1c) is used to classify glycaemia and type 2 diabetes (T2D). Body mass index (BMI) is a predictor of HbA1c levels and T2D. We tested 43 established BMI and obesity loci for association with HbA1c in a nationally representative multiethnic sample of young adults from the National Longitudinal Study of Adolescent to Adult Health [Add Health: age 24-34 years; n = 5641 European Americans (EA); 1740 African Americans (AA); 1444 Hispanic Americans (HA)] without T2D, using two levels of covariate adjustment (Model 1: age, sex, smoking, and geographic region; Model 2: Model 1 covariates plus BMI). Bonferroni adjustment was made for 43 SNPs and we considered P < 0.0011 statistically significant. Means (SD) for HbA1c were 5.4% (0.3) in EA, 5.7% (0.4) in AA, and 5.5% (0.3) in HA. We observed significant evidence for association with HbA1c for two variants near SH2B1 in EA (rs4788102, P = 2.2 × 10(-4) ; rs7359397, P = 9.8 × 10(-4) ) for Model 1. Both results were attenuated after adjustment for BMI (rs4788102, P = 1.7 × 10(-3) ; rs7359397, P = 4.6 × 10(-3) ). No variant reached Bonferroni-corrected significance in AA or HA. These results suggest that SH2B1 polymorphisms are associated with HbA1c, largely independent of BMI, in EA young adults.
Project description:Black/African American (AA) individuals have a higher risk of Alzheimer's disease (AD) than White non-Hispanic persons of European ancestry (EUR) for reasons that may include economic disparities, cardiovascular health, quality of education, and biases in the methods used to diagnose AD. AD is also heritable, and some of the differences in risk may be due to genetics. Many AD-associated variants have been identified by candidate gene studies, genome-wide association studies (GWAS), and genome-sequencing studies. However, most of these studies have been performed using EUR cohorts. In this paper, we review the genetics of AD and AD-related traits in AA individuals. Importantly, studies of genetic risk factors in AA cohorts can elucidate the molecular mechanisms underlying AD risk in AA and other populations. In fact, such studies are essential to enable reliable precision medicine approaches in persons with considerable African ancestry. Furthermore, genetic studies of AA cohorts allow exploration of the ways the impact of genes can vary by ancestry, culture, and economic and environmental disparities. They have yielded important gains in our knowledge of AD genetics, and increasing AA individual representation within genetic studies should remain a priority for inclusive genetic study design.
Project description:BackgroundMotor complications are a consequence of the chronic dopaminergic treatment of Parkinson's disease (PD) and include levodopa-induced dyskinesia (LIDs) and motor fluctuations (MF). Currently, evidence is on lacking whether patients with GBA-associated PD differ in their risk of developing motor complications compared to the general PD population.ObjectiveTo evaluate the association of GBA carrier status with the development of LIDS and MFs from early PD.MethodsMotor complications were recorded prospectively in 884 patients with PD from four longitudinal cohorts using part IV of the UPDRS or MDS-UPDRS. Subjects were followed for up to 11 years and the associations of GBA mutations with the development of motor complications were assessed using parametric accelerated failure time models.ResultsIn 439 patients from Europe, GBA mutations were detected in 53 (12.1%) patients and a total of 168 cases of LIDs and 258 cases of MF were observed. GBA carrier status was not associated with the time to develop LIDs (HR 0.78, 95%CI 0.47 to 1.26, p = 0.30) or MF (HR 1.19, 95%CI 0.84 to 1.70, p = 0.33). In the American cohorts, GBA mutations were detected in 36 (8.1%) patients and GBA carrier status was also not associated with the progression to LIDs (HR 1.08, 95%CI 0.55 to 2.14, p = 0.82) or MF (HR 1.22, 95%CI 0.74 to 2.04, p = 0.43).ConclusionThis study does not provide evidence that GBA-carrier status is associated with a higher risk of developing motor complications. Publication of studies with null results is vital to develop an accurate summary of the clinical features that impact patients with GBA-associated PD.
Project description:The incidence and mortality of colorectal cancer (CRC) is higher in African Americans (AAs) than in other ethnic groups in the U. S., but reasons for the disparities are unknown. We performed gene expression profiling and microsatellite instability (MSI) analysis of sporadic CRCs from AAs vs. European Americans (EAs) to assess the contribution to CRC disparities. We evaluated gene expression of 43 AA and 43 EA CRC tumors matched by stage and 40 normal colon tissues using the Agilent human whole genome 4x44K cDNA arrays. Gene and pathway analysis were performed using Significance Analysis of Microarrays (SAM), 10-fold Cross Validation (10-fCV) and Ingenuity Pathway Analysis (IPA). MSI analysis was assessed with five NIH Bethesda markers. SAM revealed that 95 genes were differentially expressed between AA and EA patients at a false discovery rate of <5%. A 10f-CV demonstrated that 9 genes were differentially expressed between AA and EA with an accuracy of 97%. Nine genes (CRYBB2, PSPH, ADAL, VSIG10L, C17orf81, ARSE, ANKRD36B, ZNF835, ARHGAP6) were validated and differential expression confirmed by qRT-PCR in independent test set of 21 patients (10 AA, 11 EA). We also analyzed MSI in 57 of the CRC subjects. Overall, 15.8% of CRC patients had MSI, with a higher rate observed in EA (20%) than in AA (12%). MSI distribution by tumor site was 77% right and 23% left colon. Previously, genetic, epigenetic and environmental factors have been implicated in the etiology of CRC. Our results are the first to implicate differential gene expression in CRC disparities and support the existence of distinct tumor microenvironments in these two patients' populations.
Project description:PURPOSE:A recent experiment indicated that a loss of function mutation in the murine Katnal1 gene resulted in male factor infertility due to premature exfoliation of spermatids. This study investigated the relevance of this gene to infertility in humans. METHODS:Multiple methods of genetic analysis were employed to investigate whether mutations in human KATNAL1 have a causative role in male infertility. This was a genetic association study, which included DNA samples from 105 men with non-obstructive azoospermia (NOA) and 242 anonymous sperm donor controls. 28 commercially available TaqMan SNP assays were used to haplotype samples from both groups and genetically tag regions of interest across the entire gene. AmpliSeq primers were then designed for identified regions so that targeted next-generation sequencing (NGS) could be used to identify causative variants. RESULTS:Four SNPs in the 3'UTR demonstrated a putative association with NOA. The AmpliSeq primers designed for the 3'UTR provided 83 % coverage of the 7,202 basepairs within the regions of interest. Variant sites were analyzed against genetic models to identify sequence polymorphisms which associated with NOA. No variants met standard criteria for significance when tested between the groups. CONCLUSIONS:This study suggests a lack of association of KATNAL1 gene sequence variants and azoospermia in humans.