Ontology highlight
ABSTRACT: Objective
This study aimed to develop a least absolute shrinkage and selection operator (LASSO)-based multivariable normal tissue complication probability (NTCP) model to predict radiation-induced xerostomia in patients with nasopharyngeal carcinoma (NPC) treated with comprehensive salivary gland-sparing helical tomotherapy technique.Methods and materials
LASSO with the extended bootstrapping technique was used to build multivariable NTCP models to predict factors of patient-reported xerostomia relieved by 50% and 80% compared with the level at the end of radiation therapy within 1 year and 2 years, R50-1year and R80-2years, in 203 patients with NPC. The model assessment was based on 10-fold cross-validation and the area under the receiver operating characteristic curve (AUC).Results
The prediction model by LASSO with 10-fold cross-validation showed that radiation-induced xerostomia recovery could be predicted by prognostic factors of R50-1year (age, gender, T stage, UICC/AJCC stage, parotid Dmean, oral cavity Dmean, and treatment options) and R80-2years (age, gender, T stage, UICC/AJCC stage, oral cavity Dmean, N stage, and treatment options). These prediction models also demonstrated a good performance by the AUC.Conclusion
The prediction models of R50-1year and R80-2years by LASSO with 10-fold cross-validation were recommended to validate the NTCP model before comprehensive salivary gland-sparing radiation therapy in patients with NPC.
SUBMITTER: Teng F
PROVIDER: S-EPMC7953987 | biostudies-literature | 2021
REPOSITORIES: biostudies-literature
Teng Feng F Fan Wenjun W Luo Yanrong Y Xu Shouping S Gong Hanshun H Ge Ruigang R Zhang Xinxin X Wang Xiaoning X Ma Lin L
Frontiers in oncology 20210226
<h4>Objective</h4>This study aimed to develop a least absolute shrinkage and selection operator (LASSO)-based multivariable normal tissue complication probability (NTCP) model to predict radiation-induced xerostomia in patients with nasopharyngeal carcinoma (NPC) treated with comprehensive salivary gland-sparing helical tomotherapy technique.<h4>Methods and materials</h4>LASSO with the extended bootstrapping technique was used to build multivariable NTCP models to predict factors of patient-repo ...[more]