Maternal antibodies facilitate Amyloid-β clearance by activating Fc-receptor-Syk-mediated phagocytosis.
Ontology highlight
ABSTRACT: Maternal antibodies (MAbs) protect against infections in immunologically-immature neonates. Maternally transferred immunity may also be harnessed to target diseases associated with endogenous protein misfolding and aggregation, such as Alzheimer's disease (AD) and AD-pathology in Down syndrome (DS). While familial early-onset AD (fEOAD) is associated with autosomal dominant mutations in the APP, PSEN1,2 genes, promoting cerebral Amyloid-β (Aβ) deposition, DS features a life-long overexpression of the APP and DYRK1A genes, leading to a cognitive decline mediated by Aβ overproduction and tau hyperphosphorylation. Although no prenatal screening for fEOAD-related mutations is in clinical practice, DS can be diagnosed in utero. We hypothesized that anti-Aβ MAbs might promote the removal of early Aβ accumulation in the central nervous system of human APP-expressing mice. To this end, a DNA-vaccine expressing Aβ1-11 was delivered to wild-type female mice, followed by mating with 5xFAD males, which exhibit early Aβ plaque formation. MAbs reduce the offspring's cortical Aβ levels 4 months after antibodies were undetectable, along with alleviating short-term memory deficits. MAbs elicit a long-term shift in microglial phenotype in a mechanism involving activation of the FcγR1/Syk/Cofilin pathway. These data suggest that maternal immunization can alleviate cognitive decline mediated by early Aβ deposition, as occurs in EOAD and DS.
SUBMITTER: Illouz T
PROVIDER: S-EPMC7955073 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA