Project description:ObjectiveTo explore the correlation between radiomic features and the pathology of pure ground-glass opacities (pGGOs), we established a radiomics model for predicting the pathological subtypes of minimally invasive adenocarcinoma (MIA) and precursor lesions.MethodsCT images of 1521 patients with lung adenocarcinoma or precursor lesions appearing as pGGOs on CT in our hospital (The Third Affiliated Hospital of Sun Yat-sen University) from January 2015 to March 2021 were analyzed retrospectively and selected based on inclusion and exclusion criteria. pGGOs were divided into an atypical adenomatous hyperplasia (AAH)/adenocarcinoma in situ (AIS) group and an MIA group. Radiomic features were extracted from the original and preprocessed images of the region of interest. ANOVA and least absolute shrinkage and selection operator feature selection algorithm were used for feature selection. Logistic regression algorithm was used to construct radiomics prediction model. Receiver operating characteristic curves were used to evaluate the classification efficiency.Results129 pGGOs were included. 2107 radiomic features were extracted from each region of interest. 18 radiomic features were eventually selected for model construction. The area under the curve of the radiomics model was 0.884 [95% confidence interval (CI), 0.818-0.949] in the training set and 0.872 (95% CI, 0.756-0.988) in the test set, with a sensitivity of 72.73%, specificity of 88.24% and accuracy of 79.47%. The decision curve indicated that the model had a high net benefit rate.ConclusionThe prediction model for pathological subtypes of MIA and precursor lesions in pGGOs demonstrated a high diagnostic accuracy.Advances in knowledgeWe focused on lesions appearing as pGGOs on CT and revealed the differences in radiomic features between MIA and precursor lesions. We constructed a radiomics prediction model and improved the diagnostic accuracy for the pathology of MIA and precursor lesions.
Project description:To explore the diagnostic method in assessing the malignancy of pulmonary adenocarcinoma characterized by ground glass opacities (GGO) on computed tomography (CT).Preoperative CT data for preinvasive and invasive lung adenocarcinomas were analyzed retrospectively. GGO lesions that were detected on lung windows but absent using the mediastinal window were subject to adjustment of the window width, which was reduced with the fixed interval of 100 HU until the lesions were no longer evident, with a fixed mediastinal window level of 40 HU. The shape, smoking habits, size of the lesion on the lung window, and window width at which lesions disappeared were compared and receiver operating characteristic curves were used to determine the optimal cut-off of the lesion size and window width to differentiate between these invasive and preinvasive lesions.Of the 209 lung adenocarcinomas, 102 were preinvasive (25 atypical adenomatous hyperplasia and 77 adenocarcinoma in situ), while 107 were invasive (78 minimally invasive adenocarcinoma and 29 invasive adenocarcinoma). The shape, lesion size, and window width at which lesions were no longer evident differed significantly between the two groups (P < 0.05). The size of 8.9 mm and a window width of 1250 HU were the optimal cut-off to differentiate between preinvasive and invasive lesions.The shape, size of the lesion, and window width on high-resolution CT may be useful in assessing the invasiveness of lung adenocarcinoma that manifests as GGO. Irregular lesions that disappear at window width <1250 HU, with a diameter of > 8.9 mm are more likely to be invasive.
Project description:Objective: Pure ground-glass opacity (GGO) nodules have been detected with increasing frequency using computed tomography (CT). We performed a retrospective study to clarify whether lung cancer patient prognoses correlated with pure GGO nodules. We also analyzed the clinical characters of patients with pure GGO nodules to provide diagnostic guidance on lung cancer identification and treatment of patients in clinical practice. Methods: We enrolled 39 of 1422 patients with pure GGO nodules who accepted surgical treatment of the lung cancer nodules, and reviewed materials from 404 patients to verify our conclusions. To discover which factors were prognostically significant, we used the Kaplan-Meier method to estimate the overall survival (OS) and progression-free survival (PFS) curves. Age, gender, smoking history, histology, tumor size, and stage were the factors examined in our study. We also performed subgroup and matching group analyses to clarify the correlation between the presence of pure GGO nodules and prognoses. Results: Pure GGO nodules were associated with non-smoking females that had adenocarcinoma. The prognoses of patients in the pure GGO nodule group was better than those in the non-pure GGO nodule group (p = 0.046). Age, grade, and stage (including tumor size and lymph node metastases) were had prognostic significance. In the matching group stage assessments, although patient prognoses were not significantly different among patients of the GGO group compared with thoses of the other group in long-term, while in the short term, patients with pure GGO nodules had longer PFS. Non-smoking female patients with lung cancer were more likely to have adenocarcinoma. Conclusions: As a subgroup of GGO nodules, pure GGO nodules predict a better prognosis in all lung cancer patients. Wheras our study showed that lung patients with pure GGO nodules in similar stages were not significantly different in long-term prognoses, in the short term; patients with pure GGO nodules had longer PFS.
Project description:Chest computed tomography (CT) is the gold standard for detecting structural abnormalities in patients with primary ciliary dyskinesia (PCD) such as bronchiectasis, bronchial wall thickening and mucus plugging. There are no studies on quantitative assessment of airway and artery abnormalities in children with PCD. The objectives of the present study were to quantify airway and artery dimensions on chest CT in a cohort of children with PCD and compare these with control children to analyse the influence of covariates on airway and artery dimensions. Chest CTs of 13 children with PCD (14 CT scans) and 12 control children were collected retrospectively. The bronchial tree was segmented semi-automatically and reconstructed in a three-dimensional view. All visible airway-artery (AA) pairs were measured perpendicular to the airway centre line, annotating per branch inner and outer airway and adjacent artery diameter and computing inner airway diameter/artery ratio (AinA ratio), outer airway diameter/artery ratio (AoutA ratio), wall thickness (WT), WT/outer airway diameter ratio (Awt ratio) and WT/artery ratio. In the children with PCD (38.5% male, mean age 13.5 years, range 9.8-15.3) 1526 AA pairs were measured versus 1516 in controls (58.3% male, mean age 13.5 years, range 8-14.8). AinA ratio and AoutA ratio were significantly higher in children with PCD than in control children (both p<0.001). Awt ratio was significantly higher in control children than in children with PCD (p<0.001). Our study showed that in children with PCD airways are more dilated than in controls and do not show airway wall thickening.
Project description:We assessed the CT attenuation density of the pulmonary tissue adjacent to the heart in patients with acute non-ST segment elevation myocardial infarction (J.T. Kuhl, T.S. Kristensen, A.F. Thomsen et al., 2016) [1]. This data was related to the level of ground-glass opacification evaluated by a radiologist, and data on the interobserver variability of semi-automated assessment of pulmonary attenuation density was provided.
Project description:PURPOSE:Intraoperative localization and resection of ill-defined pulmonary ground-glass opacities (GGOs) during minimally invasive pulmonary resection is technically challenging. Current preoperative techniques to facilitate localization of GGOs include microcoil and hook wire placement, both of which have logistic limitations, carry safety concerns, and do not help with margin assessment. In this clinical trial, we explored an alternative method involving near-infrared molecular imaging with a folate receptor-targeted agent, OTL38, to improve localization of GGOs and confirmation of resection margins. METHODS:In a human trial, 20 subjects with pulmonary GGOs who were eligible for video-assisted thoracoscopic surgery (VATS) resection received 0.025 mg/kg of OTL38 before the resection. The primary objectives were to (1) determine whether use of OTL38 allows safe localization of GGOs and assessment of margins during VATS and (2) determine patient, radiographic, and histopathologic variables that predict the amount of fluorescence during near-infrared imaging. RESULTS:We observed no toxicity. Of the 21 GGOs, 20 accumulated OTL38 and displayed fluorescence upon in situ or back table evaluation. Intraoperatively, near-infrared imaging localized 15 of 21 lesions whereas VATS alone localized 10 of 21 (p = 0.05). The addition of molecular imaging affected care of nine of 21 subjects by improving intraoperative localization (n = 6) and identifying close margins (n = 3). This approach was most effective for subpleural lesions measuring less than 2 cm. For lesions deeper than 1.5 cm from the pleural surface, intraoperative localization using fluorescent feedback was limited. CONCLUSIONS:This approach provides a safe alternative for intraoperative localization of small, peripherally located pulmonary lesions. In contrast to alternative localization techniques, use of OTL38 also allows confirmation of adequate margins. Future studies will compare this approach to alternative localization techniques in a clinical trial.
Project description:BackgroundInvasive pure ground-glass opacity and pre-invasive pure ground-glass opacity have different 5-year overall survival rate and risk of lymph node metastasis and the extent of resection. It is difficult to discriminate these nodules since they share similar CT features and may occur concurrently. The objectives of this study were to investigate the feasibility of non-contrast enhanced plus contrast-enhanced computed tomography in discriminating invasive pure ground-glass opacity from pre-invasive pure ground-glass opacity.MethodsWe retrospectively examined 90 patients with pure ground-glass opacity who underwent non-contrast enhanced and contrast-enhanced CT according to a simplified protocol (one non-contrast enhanced measurement and two contrast-enhanced measurements at 30?s and 60?s after contrast injection) from 2015 to 2019. All imaging examinations were analyzed using three-dimensional computer-aided volume. Two independent samples t tests, one-way analysis of variance, chi-square test and logistic regression were used for analysis. A receiver operating characteristic curve was used to determine the optimal cut-off value of mean CT attenuation for differentiation of groups and to obtain diagnostic value.Results(1) The CT values of one non-contrast-enhanced, two contrast-enhanced and volume measurements between two groups had statistically significant differences (P <?0.001). (2) At the 30-s scan, there were more nodules in the pre-invasive group with no enhancement than in the pre-invasive group, which was statistically significant. (3) The CT value of 60-s scan was independent predictor of invasive adenocarcinoma (P =?0.019).ConclusionsNon-contrast enhanced plus two contrast-enhanced CT based on volume measurements can differentiate invasive pGGO from pre-invasive pGGO.
Project description:OBJECTIVES:To assess the performance of the "Computer-Aided Nodule Assessment and Risk Yield" (CANARY) software in the differentiation and risk assessment of histological subtypes of lung adenocarcinomas manifesting as pure ground glass nodules on computed tomography (CT). METHODS:64 surgically resected and histologically proven adenocarcinomas manifesting as pure ground-glass nodules on CT were assessed using CANARY software, which classifies voxel-densities into three risk components (low, intermediate, and high risk). Differences in risk components between histological adenocarcinoma subtypes were analysed. To determine the optimal threshold reflecting the presence of an invasive focus, sensitivity, specificity, negative predictive value, and positive predictive value were calculated. RESULTS:28/64 (44%) were adenocarcinomas in situ (AIS); 26/64 (41%) were minimally invasive adenocarcinomas (MIA); and 10/64 (16%) were invasive ACs (IAC). The software showed significant differences in risk components between histological subtypes (P<0.001-0.003). A relative volume of 45% or less of low-risk components was associated with histological invasiveness (specificity 100%, positive predictive value 100%). CONCLUSIONS:CANARY-based risk assessment of ACs manifesting as pure ground glass nodules on CT allows the differentiation of their histological subtypes. A threshold of 45% of low-risk components reflects invasiveness in these groups. KEY POINTS:• CANARY-based risk assessment allows the differentiation of their histological subtypes. • 45% or less of low-risk component reflects histological invasiveness. • CANARY has potential role in suspected adenocarcinomas manifesting as pure ground-glass nodules.
Project description:BackgroundThe management of ground-glass opacities (GGOs) depends mainly on personal experience. In clinical practice, benign GGOs are not rare in resected specimens, for which operations may be avoided. We retrospectively compared the clinical features of resected GGOs to identify differential diagnostic characteristics.MethodsAmong 1456 patients with suspected malignant GGOs who underwent surgical resection, 105 patients (35 with benign GGOs and 70 matched controls with malignant GGOs) were included. Clinical characteristics, including demographics and radiologic, surgical and pathologic characteristics, were collected.ResultsThe smoking index (P = 0.044), frequency of coughing (P = 0.026), GGO size (P = 0.003), size change during follow-up (P = 0.011), location (P = 0.022), presence of air bronchogram sign (P = 0.004), distance to the pleura (P = 0.021) and positron emission tomography/computed tomography (PET/CT) appearance (P = 0.003) showed significant differences between the benign and malignant groups. Pathologically, the resected benign GGOs included focal fibrosis (17), inflammation or infection (seven), lymphoproliferative disorder (one), hamartoma (three), inflammatory myofibroblastic tumor (two), hemangioma or vascular malformation (two), endometriosis (two) and pulmonary cyst (one).ConclusionsA higher smoking index, coughing, larger size, similar or increased size during follow-up, location in the upper and middle lobes, air bronchogram sign on CT, lesion margin to pleura distance over 1 cm, and malignant tendency on PET/CT reports were associated with malignant GGOs. Relatively active surgical interventions could be considered for GGOs highly suspected of malignancy.