The Effect of Binder Loading on the Pore Size of 3D Printed PMMA.
Ontology highlight
ABSTRACT: Binder jetting is known to produce porous objects by depositing the binder selectively layer by layer on a powder bed. In this study, the pore size of printed parts and the correlating mechanical properties are investigated on a commercially available PMMA powder binder system. Pore sizes are measured via capillary flow porometry and mechanical properties via tensile tests. Porometry indicates that the pore size stays at a constant level of 22 µm at 5 to 10 wt% binder loading before decreasing to 6 µm at loadings of 30 wt% or higher. The results were compared with the mechanical testing and related to the agglomerate strength model of Rumpf. The highlights of the article are the application of a binder jetted part as a filter and the identification of a close relationship between porosity and mechanical strength, similar to phenomena in agglomeration science.
SUBMITTER: Riechmann S
PROVIDER: S-EPMC7959472 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA