Analysis of historical road accident data supporting autonomous vehicle control strategies.
Ontology highlight
ABSTRACT: It is expected that most accidents occurring due to human mistakes will be eliminated by autonomous vehicles. Their control is based on real-time data obtained from the various sensors, processed by sophisticated algorithms and the operation of actuators. However, it is worth noting that this process flow cannot handle unexpected accident situations like a child running out in front of the vehicle or an unexpectedly slippery road surface. A comprehensive analysis of historical accident data can help to forecast these situations. For example, it is possible to localize areas of the public road network, where the number of accidents related to careless pedestrians or bad road surface conditions is significantly higher than expected. This information can help the control of the autonomous vehicle to prepare for dangerous situations long before the real-time sensors provide any related information. This manuscript presents a data-mining method working on the already existing road accident database records to find the black spots of the road network. As a next step, a further statistical approach is used to find the significant risk factors of these zones, which result can be built into the controlling strategy of self-driven cars to prepare them for these situations to decrease the probability of the potential further incidents. The evaluation part of this paper shows that the robustness of the proposed method is similar to the already existing black spot searching algorithms. However, it provides additional information about the main accident patterns.
SUBMITTER: Szenasi S
PROVIDER: S-EPMC7959616 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA