Unknown

Dataset Information

0

PredNTS: Improved and Robust Prediction of Nitrotyrosine Sites by Integrating Multiple Sequence Features.


ABSTRACT: Nitrotyrosine, which is generated by numerous reactive nitrogen species, is a type of protein post-translational modification. Identification of site-specific nitration modification on tyrosine is a prerequisite to understanding the molecular function of nitrated proteins. Thanks to the progress of machine learning, computational prediction can play a vital role before the biological experimentation. Herein, we developed a computational predictor PredNTS by integrating multiple sequence features including K-mer, composition of k-spaced amino acid pairs (CKSAAP), AAindex, and binary encoding schemes. The important features were selected by the recursive feature elimination approach using a random forest classifier. Finally, we linearly combined the successive random forest (RF) probability scores generated by the different, single encoding-employing RF models. The resultant PredNTS predictor achieved an area under a curve (AUC) of 0.910 using five-fold cross validation. It outperformed the existing predictors on a comprehensive and independent dataset. Furthermore, we investigated several machine learning algorithms to demonstrate the superiority of the employed RF algorithm. The PredNTS is a useful computational resource for the prediction of nitrotyrosine sites. The web-application with the curated datasets of the PredNTS is publicly available.

SUBMITTER: Nilamyani AN 

PROVIDER: S-EPMC7962192 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC6099560 | biostudies-literature
| S-EPMC7924619 | biostudies-literature
| S-EPMC6193575 | biostudies-literature
| S-EPMC6411759 | biostudies-literature
| S-EPMC4910163 | biostudies-literature
| S-EPMC4133382 | biostudies-literature
| S-EPMC4889921 | biostudies-literature
| S-EPMC5820155 | biostudies-literature
| S-EPMC3770009 | biostudies-literature
| S-EPMC4104576 | biostudies-literature