Unknown

Dataset Information

0

Development and Validation of a Deep Learning-Based Automatic Brain Segmentation and Classification Algorithm for Alzheimer Disease Using 3D T1-Weighted Volumetric Images.


ABSTRACT:

Background and purpose

Limited evidence has suggested that a deep learning automatic brain segmentation and classification method, based on T1-weighted brain MR images, can predict Alzheimer disease. Our aim was to develop and validate a deep learning-based automatic brain segmentation and classification algorithm for the diagnosis of Alzheimer disease using 3D T1-weighted brain MR images.

Materials and methods

A deep learning-based algorithm was developed using a dataset of T1-weighted brain MR images in consecutive patients with Alzheimer disease and mild cognitive impairment. We developed a 2-step algorithm using a convolutional neural network to perform brain parcellation followed by 3 classifier techniques including XGBoost for disease prediction. All classification experiments were performed using 5-fold cross-validation. The diagnostic performance of the XGBoost method was compared with logistic regression and a linear Support Vector Machine by calculating their areas under the curve for differentiating Alzheimer disease from mild cognitive impairment and mild cognitive impairment from healthy controls.

Results

In a total of 4 datasets, 1099, 212, 711, and 705 eligible patients were included. Compared with the linear Support Vector Machine and logistic regression, XGBoost significantly improved the prediction of Alzheimer disease (P < .001). In terms of differentiating Alzheimer disease from mild cognitive impairment, the 3 algorithms resulted in areas under the curve of 0.758-0.825. XGBoost had a sensitivity of 68% and a specificity of 70%. In terms of differentiating mild cognitive impairment from the healthy control group, the 3 algorithms resulted in areas under the curve of 0.668-0.870. XGBoost had a sensitivity of 79% and a specificity of 80%.

Conclusions

The deep learning-based automatic brain segmentation and classification algorithm allowed an accurate diagnosis of Alzheimer disease using T1-weighted brain MR images. The widespread availability of T1-weighted brain MR imaging suggests that this algorithm is a promising and widely applicable method for predicting Alzheimer disease.

SUBMITTER: Suh CH 

PROVIDER: S-EPMC7963227 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC9398848 | biostudies-literature
| S-EPMC8273917 | biostudies-literature
| S-EPMC7281812 | biostudies-literature
| S-EPMC5047453 | biostudies-literature
| S-EPMC10033524 | biostudies-literature
| S-EPMC10365226 | biostudies-literature
| S-EPMC10916038 | biostudies-literature
| S-EPMC10618482 | biostudies-literature
| S-EPMC7735327 | biostudies-literature
| S-EPMC9854669 | biostudies-literature