Unknown

Dataset Information

0

Optimizing a literature surveillance strategy to retrieve sound overall prognosis and risk assessment model papers.


ABSTRACT:

Objective

Our aim was to develop an efficient search strategy for prognostic studies and clinical prediction guides (CPGs), optimally balancing sensitivity and precision while independent of MeSH terms, as relying on them may miss the most current literature.

Materials and methods

We combined 2 Hedges-based search strategies, modified to remove MeSH terms for overall prognostic studies and CPGs, and ran the search on 269 journals. We read abstracts from a random subset of retrieved references until ≥ 20 per journal were reviewed and classified them as positive when fulfilling standardized quality criteria, thereby assembling a standard dataset used to calibrate the search strategy. We determined performance characteristics of our new search strategy against the Hedges standard and performance characteristics of published search strategies against the standard dataset.

Results

Our search strategy retrieved 16 089 references from 269 journals during our study period. One hundred fifty-four journals yielded ≥ 20 references and ≥ 1 prognostic study or CPG. Against the Hedges standard, the new search strategy had sensitivity/specificity/precision/accuracy of 84%/80%/2%/80%, respectively. Existing published strategies tested against our standard dataset had sensitivities of 36%-94% and precision of 5%-10%.

Discussion

We developed a new search strategy to identify overall prognosis studies and CPGs independent of MeSH terms. These studies are important for medical decision-making, as they identify specific populations and individuals who may benefit from interventions.

Conclusion

Our results may benefit literature surveillance and clinical guideline efforts, as our search strategy performs as well as published search strategies while capturing literature at the time of publication.

SUBMITTER: Kavanagh PL 

PROVIDER: S-EPMC7973466 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC4765763 | biostudies-other
2019-04-03 | GSE116231 | GEO
| S-EPMC10858938 | biostudies-literature
| S-EPMC8048031 | biostudies-literature
| S-EPMC8031921 | biostudies-literature
| S-EPMC3325176 | biostudies-literature
| S-EPMC5500503 | biostudies-literature
| S-EPMC2600317 | biostudies-literature
| S-EPMC7801666 | biostudies-literature
| S-EPMC2798954 | biostudies-literature