Large carbon sink potential of secondary forests in the Brazilian Amazon to mitigate climate change.
Ontology highlight
ABSTRACT: Tropical secondary forests sequester carbon up to 20 times faster than old-growth forests. This rate does not capture spatial regrowth patterns due to environmental and disturbance drivers. Here we quantify the influence of such drivers on the rate and spatial patterns of regrowth in the Brazilian Amazon using satellite data. Carbon sequestration rates of young secondary forests (<20 years) in the west are ~60% higher (3.0 ± 1.0 Mg C ha-1 yr-1) compared to those in the east (1.3 ± 0.3 Mg C ha-1 yr-1). Disturbances reduce regrowth rates by 8-55%. The 2017 secondary forest carbon stock, of 294 Tg C, could be 8% higher by avoiding fires and repeated deforestation. Maintaining the 2017 secondary forest area has the potential to accumulate ~19.0 Tg C yr-1 until 2030, contributing ~5.5% to Brazil's 2030 net emissions reduction target. Implementing legal mechanisms to protect and expand secondary forests whilst supporting old-growth conservation is, therefore, key to realising their potential as a nature-based climate solution.
Project description:Strategies to mitigate carbon dioxide emissions through forestry activities have been proposed, but ecosystem process-based integration of climate change, enhanced CO2, disturbance from fire, and management actions at regional scales are extremely limited. Here, we examine the relative merits of afforestation, reforestation, management changes, and harvest residue bioenergy use in the Pacific Northwest. This region represents some of the highest carbon density forests in the world, which can store carbon in trees for 800 y or more. Oregon's net ecosystem carbon balance (NECB) was equivalent to 72% of total emissions in 2011-2015. By 2100, simulations show increased net carbon uptake with little change in wildfires. Reforestation, afforestation, lengthened harvest cycles on private lands, and restricting harvest on public lands increase NECB 56% by 2100, with the latter two actions contributing the most. Resultant cobenefits included water availability and biodiversity, primarily from increased forest area, age, and species diversity. Converting 127,000 ha of irrigated grass crops to native forests could decrease irrigation demand by 233 billion m3?y-1 Utilizing harvest residues for bioenergy production instead of leaving them in forests to decompose increased emissions in the short-term (50 y), reducing mitigation effectiveness. Increasing forest carbon on public lands reduced emissions compared with storage in wood products because the residence time is more than twice that of wood products. Hence, temperate forests with high carbon densities and lower vulnerability to mortality have substantial potential for reducing forest sector emissions. Our analysis framework provides a template for assessments in other temperate regions.
Project description:Most of the planet's diversity is concentrated in the tropics, which includes many regions undergoing rapid climate change. Yet, while climate-induced biodiversity changes are widely documented elsewhere, few studies have addressed this issue for lowland tropical ecosystems. Here we investigate whether the floristic and functional composition of intact lowland Amazonian forests have been changing by evaluating records from 106 long-term inventory plots spanning 30 years. We analyse three traits that have been hypothesized to respond to different environmental drivers (increase in moisture stress and atmospheric CO2 concentrations): maximum tree size, biogeographic water-deficit affiliation and wood density. Tree communities have become increasingly dominated by large-statured taxa, but to date there has been no detectable change in mean wood density or water deficit affiliation at the community level, despite most forest plots having experienced an intensification of the dry season. However, among newly recruited trees, dry-affiliated genera have become more abundant, while the mortality of wet-affiliated genera has increased in those plots where the dry season has intensified most. Thus, a slow shift to a more dry-affiliated Amazonia is underway, with changes in compositional dynamics (recruits and mortality) consistent with climate-change drivers, but yet to significantly impact whole-community composition. The Amazon observational record suggests that the increase in atmospheric CO2 is driving a shift within tree communities to large-statured species and that climate changes to date will impact forest composition, but long generation times of tropical trees mean that biodiversity change is lagging behind climate change.
Project description:Protected areas (PAs) now shelter 54% of the remaining forests of the Brazilian Amazon and contain 56% of its forest carbon. However, the role of these PAs in reducing carbon fluxes to the atmosphere from deforestation and their associated costs are still uncertain. To fill this gap, we analyzed the effect of each of 595 Brazilian Amazon PAs on deforestation using a metric that accounts for differences in probability of deforestation in areas of pairwise comparison. We found that the three major categories of PA (indigenous land, strictly protected, and sustainable use) showed an inhibitory effect, on average, between 1997 and 2008. Of 206 PAs created after the year 1999, 115 showed increased effectiveness after their designation as protected. The recent expansion of PAs in the Brazilian Amazon was responsible for 37% of the region's total reduction in deforestation between 2004 and 2006 without provoking leakage. All PAs, if fully implemented, have the potential to avoid 8.0 +/- 2.8 Pg of carbon emissions by 2050. Effectively implementing PAs in zones under high current or future anthropogenic threat offers high payoffs for reducing carbon emissions, and as a result should receive special attention in planning investments for regional conservation. Nevertheless, this strategy demands prompt and predictable resource streams. The Amazon PA network represents a cost of US$147 +/- 53 billion (net present value) for Brazil in terms of forgone profits and investments needed for their consolidation. These costs could be partially compensated by an international climate accord that includes economic incentives for tropical countries that reduce their carbon emissions from deforestation and forest degradation.
Project description:Human-induced climate change is considered a conspicuous threat to biodiversity in the 21st century. Species' response to climate change depends on their exposition, sensitivity and ability to adapt to novel climates. Exposure to climate change is however uneven within species' range, so that some populations may be more at risk than others. Identifying the regions most exposed to climate change is therefore a first and pivotal step on determining species' vulnerability across their geographic ranges. Here, we aimed at quantifying mammal local exposure to climate change across species' ranges. We identified areas in the Brazilian Amazon where mammals will be critically exposed to non-analogue climates in the future with different variables predicted by 15 global circulation climate forecasts. We also built a null model to assess the effectiveness of the Amazon protected areas in buffering the effects of climate change on mammals, using an innovative and more realistic approach. We found that 85% of species are likely to be exposed to non-analogue climatic conditions in more than 80% of their ranges by 2070. That percentage is even higher for endemic mammals; almost all endemic species are predicted to be exposed in more than 80% of their range. Exposure patterns also varied with different climatic variables and seem to be geographically structured. Western and northern Amazon species are more likely to experience temperature anomalies while northeastern species will be more affected by rainfall abnormality. We also observed an increase in the number of critically-exposed species from 2050 to 2070. Overall, our results indicate that mammals might face high exposure to climate change and that protected areas will probably not be efficient enough to avert those impacts.
Project description:The terrestrial carbon sink, as of yet unidentified, represents 15-30% of annual global emissions of carbon from fossil fuels and industrial activities. Some of the missing carbon is sequestered in vegetation biomass and, under the Kyoto Protocol of the United Nations Framework Convention on Climate Change, industrialized nations can use certain forest biomass sinks to meet their greenhouse gas emissions reduction commitments. Therefore, we analyzed 19 years of data from remote-sensing spacecraft and forest inventories to identify the size and location of such sinks. The results, which cover the years 1981-1999, reveal a picture of biomass carbon gains in Eurasian boreal and North American temperate forests and losses in some Canadian boreal forests. For the 1.42 billion hectares of Northern forests, roughly above the 30th parallel, we estimate the biomass sink to be 0.68 +/- 0.34 billion tons carbon per year, of which nearly 70% is in Eurasia, in proportion to its forest area and in disproportion to its biomass carbon pool. The relatively high spatial resolution of these estimates permits direct validation with ground data and contributes to a monitoring program of forest biomass sinks under the Kyoto protocol.
Project description:Carbon finance projects that protect tropical forests could support both nature conservation and climate change mitigation goals. Global demand for nature-based carbon credits is outpacing their supply, due partly to gaps in knowledge needed to inform and prioritize investment decisions. Here, we show that at current carbon market prices the protection of tropical forests can generate investible carbon amounting to 1.8 (±1.1) GtCO2e yr-1 globally. We further show that financially viable carbon projects could generate return-on-investment amounting to $46.0b y-1 in net present value (Asia-Pacific: $24.6b y-1; Americas: $19.1b y-1; Africa: $2.4b y-1). However, we also find that ~80% (1.24 billion ha) of forest carbon sites would be financially unviable for failing to break even over the project lifetime. From a conservation perspective, unless carbon prices increase in the future, it is imperative to implement other conservation interventions, in addition to carbon finance, to safeguard carbon stocks and biodiversity in vulnerable forests.
Project description:Widely recognized as a significant carbon sink, North American forests have experienced a history of recovery and are facing an uncertain future. This growing carbon sink is dictated by recovery from land-use change, with growth trajectory modified by environmental change. To address both processes, we compiled a forest inventory dataset from North America to quantify aboveground biomass growth with stand age across forest types and climate gradients. Here we show, the biomass grows from 90 Mg ha-1 (2000-2016) to 105 Mg ha-1 (2020?s), 128 Mg ha-1 (2050?s), and 146 Mg ha-1 (2080?s) under climate change scenarios with no further disturbances. Climate change modifies the forest recovery trajectory to some extent, but the overall growth is limited, showing signs of biomass saturation. The future (2080s) biomass will only sequester at most 22% more carbon than the current level. Given such a strong sink has limited growth potential, our ground-based analysis suggests policy changes to sustain the carbon sink.
Project description:Climate change poses a serious risk to sustainable forest management, particularly in boreal forests where natural disturbances have been projected to become more severe. In three Quebec boreal forest management units, biomass carbon storage under various climate change and management scenarios was projected over 300 years (2010-2310) with a process-based dynamic landscape model (PnET-succession for Landis-II). Several strategies varying in their use of partial cuts and clear cuts, including business as usual (BAU) (clear-cut applied on more than 95% of the managed area), were tested and compared to conservation scenarios (no-harvest). Based on simulation results at the landscape scale, the clearcut-based scenarios such as BAU could result in a decrease of biomass carbon stock by 10 tC ha-1 yr-1 compared to the natural scenario. However, this reduction in carbon stock could be offset in the long term through changes in composition, as clearcut systems promote the expansion of trembling aspen and white birch. In contrast, the use of strategies based on partial cuts on more than 75% or 50% of the managed area was closer to or better than the natural scenario and resulted in greater coniferous cover retention. These strategies seemed to be the best to maximize and stabilize biomass carbon storage and ensure wood supply under different climate change scenarios, yet they would require further access and appropriate infrastructure. Furthermore, these strategies could maintain species compositions and age structures similar to natural scenarios, and thus may consequently help achieve forest ecosystem-based management targets. This study presents promising strategies to guide sustainable forest management in Eastern Canada in the context of climate change.
Project description:Forests are critical for stabilizing our climate, but costs of mitigation over space, time, and stakeholder group remain uncertain. Using the Global Timber Model, we project mitigation potential and costs for four abatement activities across 16 regions for carbon price scenarios of $5-$100/tCO2. We project 0.6-6.0 GtCO2 yr-1 in global mitigation by 2055 at costs of 2-393 billion USD yr-1, with avoided tropical deforestation comprising 30-54% of total mitigation. Higher prices incentivize larger mitigation proportions via rotation and forest management activities in temperate and boreal biomes. Forest area increases 415-875 Mha relative to the baseline by 2055 at prices $35-$100/tCO2, with intensive plantations comprising <7% of this increase. Mitigation costs borne by private land managers comprise less than one-quarter of total costs. For forests to contribute ~10% of mitigation needed to limit global warming to 1.5 °C, carbon prices will need to reach $281/tCO2 in 2055.
Project description:Amazon forests have experienced frequent and severe droughts in the past two decades. However, little is known about the large-scale legacy of droughts on carbon stocks and dynamics of forests. Using systematic sampling of forest structure measured by LiDAR waveforms from 2003 to 2008, here we show a significant loss of carbon over the entire Amazon basin at a rate of 0.3?±?0.2 (95% CI)?PgC?yr-1 after the 2005 mega-drought, which continued persistently over the next 3 years (2005-2008). The changes in forest structure, captured by average LiDAR forest height and converted to above ground biomass carbon density, show an average loss of 2.35?±?1.80?MgC?ha-1 a year after (2006) in the epicenter of the drought. With more frequent droughts expected in future, forests of Amazon may lose their role as a robust sink of carbon, leading to a significant positive climate feedback and exacerbating warming trends.