Unknown

Dataset Information

0

Revealing the mechanism of SARS-CoV-2 spike protein binding with ACE2.


ABSTRACT: A large population in the world has been infected by COVID-19. Understanding the mechanisms of Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) is important for management and treatment of the COVID-19. When it comes to the infection process, one of the most important proteins in SARS-CoV-2 is the spike (S) protein, which is able to bind to human Angiotensin-Converting Enzyme 2 (ACE2) and initializes the entry of the host cell. In this study, we implemented multi-scale computational approaches to study the electrostatic features of the interfaces of the SARS-CoV-2 S protein Receptor Binding Domain (RBD) and ACE2. The simulations and analyses were performed on high-performance computing resources in Texas Advanced Computing Center (TACC). Our study identified key residues on the SARS-CoV-2, which can be used as targets for future drug design. The results shed lights on future drug design and therapeutic targets for COVID-19.

SUBMITTER: Xie Y 

PROVIDER: S-EPMC7983027 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-BSST649 | biostudies-other
| EMPIAR-11181 | biostudies-other
| S-SCDT-EMM-2022-15904 | biostudies-other
| S-EPMC8370119 | biostudies-literature
| S-EPMC7337377 | biostudies-literature
| S-EPMC7833600 | biostudies-literature
| S-EPMC8482554 | biostudies-literature
| EMPIAR-11180 | biostudies-other
| EMPIAR-11179 | biostudies-other
| S-EPMC8083718 | biostudies-literature