Project description:In this case with antidromic atrioventricular reciprocating tachycardia via the atriofascicular pathway, entrainment from the right ventricular apex showed minor constant fusion. This may indicate that an atriofascicular pathway with distal arborization can connect to the branch of the right bundle and partly to the working myocardium.
Project description:A 73-year-old woman was admitted for atrial tachycardia (AT) ablation. The activation map and pacing study indicated that the AT propagated around the left pulmonary vein and that the Marshall bundle (MB) bypassed the scar area of the left pulmonary vein ridge and mitral isthmus. The Rhythmia Mapping System revealed double potentials propagated along the assumed position of the MB. The mapping system includes a confidence mask that can be used to visually identify low-confidence areas of the map based upon extremely low-voltage signals. Given the low-voltage area in the endocardial side, the epicardial conduction was emphasized.
Project description:In the electrophysiological laboratory, orthodromic atrioventricular reciprocating tachycardia (ORT) can be distinguished from atrial tachycardia and atrioventricular node reentry tachycardia by identifying orthodromic and antidromic wavefront fusion during ventricular overdrive pacing (VOP). Previous work has shown that basal VOP near the accessory pathway (AP) increases the likelihood of observing fusion; however, in a third of cases, fusion is not appreciable regardless of VOP location.To explore the hypothesis that pacing near His-Purkinje system (PS) end points reduces fusion quality, which may explain patients with nonresponsive ORT.In a novel computer model of ORT, simulations were performed with a variety of AP locations and pacing sites; results were analyzed to assess factors influencing fusion quality in pseudo-electrocardiogram signals.Entrainment by basal VOP near the AP was more likely to produce fusion visible on simulated electrocardiograms compared to entrainment by apical VOP, but this advantage was dramatically diminished when the pacing site was also near PS end points. Prediction of fusion quality based on AP proximity alone was dramatically improved when corrected to penalize for PS proximity.These results suggest that basal VOP near the AP and far from the PS is optimal; this could be tested in patients. A denser basal ramification of PS fibers is known to exist in a minority of human hearts; our findings indicate that this unusual PS configuration is a plausible explanation for ORT cases where fusion is never observed in spite of entrainment by basal VOP near the AP.
Project description:Learning and other cognitive tasks require integrating new experiences into context. In contrast to sensory-evoked synaptic plasticity, comparatively little is known of how synaptic plasticity may be regulated by intrinsic activity in the brain, much of which can involve nonclassical modes of neuronal firing and integration. Coherent high-frequency oscillations of electrical activity in CA1 hippocampal neurons [sharp-wave ripple complexes (SPW-Rs)] functionally couple neurons into transient ensembles. These oscillations occur during slow-wave sleep or at rest. Neurons that participate in SPW-Rs are distinguished from adjacent nonparticipating neurons by firing action potentials that are initiated ectopically in the distal region of axons and propagate antidromically to the cell body. This activity is facilitated by GABA(A)-mediated depolarization of axons and electrotonic coupling. The possible effects of antidromic firing on synaptic strength are unknown. We find that facilitation of spontaneous SPW-Rs in hippocampal slices by increasing gap-junction coupling or by GABA(A)-mediated axon depolarization resulted in a reduction of synaptic strength, and electrical stimulation of axons evoked a widespread, long-lasting synaptic depression. Unlike other forms of synaptic plasticity, this synaptic depression is not dependent upon synaptic input or glutamate receptor activation, but rather requires L-type calcium channel activation and functional gap junctions. Synaptic stimulation delivered after antidromic firing, which was otherwise too weak to induce synaptic potentiation, triggered a long-lasting increase in synaptic strength. Rescaling synaptic weights in subsets of neurons firing antidromically during SPW-Rs might contribute to memory consolidation by sharpening specificity of subsequent synaptic input and promoting incorporation of novel information.
Project description:Elucidation of both the molecular composition and organization of the ocular lens is a prerequisite to understand its development, function, pathology, regenerative capacity, as well as to model lens development and disease using in vitro differentiation of pluripotent stem cells. Lens is comprised of the anterior lens epithelium and posterior lens fibers, which form the bulk of the lens. Lens fibers differentiate from lens epithelial cells through cell cycle exit-coupled differentiation that includes cellular elongation, accumulation of crystallins, cytoskeleton and membrane remodeling, and degradation of organelles within the central region of the lens. Here, we profiled spatiotemporal expression dynamics of both mRNAs and non-coding RNAs from microdissected mouse nascent lens epithelium and lens fibers at four developmental time points (embryonic [E] day 14.5, E16.5, E18.5, and P0.5) by RNA-seq. During this critical time window, multiple complex biosynthetic and catabolic processes generate the molecular and structural foundation for lens transparency. Throughout this developmental window, 3544 and 3518 genes show consistently and significantly greater expression in the nascent lens epithelium and fibers, respectively. Comprehensive data analysis confirmed major roles of FGF-MAPK, Wnt/β-catenin, PI3K/AKT, TGF-β, and BMP signaling pathways and revealed significant novel contributions of mTOR, EIF2, EIF4, and p70S6K signaling in lens formation. Unbiased motif analysis within promoter regions of these genes with consistent expression changes between epithelium and fiber cells revealed an enrichment for both established (e.g. E2Fs, Etv5, Hsf4, c-Maf, MafG, MafK, N-Myc, and Pax6) transcription factors and a number of novel regulators of lens formation, such as Arntl2, Dmrta2, Stat5a, Stat5b, and Tulp3. In conclusion, the present RNA-seq data serves as a comprehensive reference resource for deciphering molecular principles of normal mammalian lens differentiation, mapping a full spectrum of signaling pathways and DNA-binding transcription factors operating in both lens compartments, and predicting novel pathways required to establish lens transparency.
Project description:Deficits in amnesic patients suggest that spatial cognition and episodic memory are intimately related. Among the different types of spatial processing, the allocentric, relying on the hippocampal formation, and the egocentric-updated, relying on parieto-temporal connections have both been considered to functionally underlie episodic memory encoding and retrieval. We explore the cerebral correlates underlying the episodic retrieval of words previously learnt outside the magnet while performing different spatial processes, allocentric and egocentric-updated. Subsequently and during fMRI, participants performed an episodic word recognition task. Data processing revealed that the correct recognition of words learnt in egocentric-updated condition enhanced activity of the medial and lateral parietal, as well as temporal cortices. No additional regions were activated in the present study by retrieving words learnt in allocentric condition. This study sheds new light on the functional links between episodic memory and spatial processing: The temporo-parietal network is confirmed to be crucial in episodic memory in healthy participants and could be linked to the egocentric-updated process.
Project description:Humans and other species continually perform microscopic eye movements, even when attending to a single point. These movements, which include drifts and microsaccades, are under oculomotor control, elicit strong neural responses, and have been thought to serve important functions. The influence of these fixational eye movements on the acquisition and neural processing of visual information remains unclear. Here, we show that during viewing of natural scenes, microscopic eye movements carry out a crucial information-processing step: they remove predictable correlations in natural scenes by equalizing the spatial power of the retinal image within the frequency range of ganglion cells' peak sensitivity. This transformation, which had been attributed to center-surround receptive field organization, occurs prior to any neural processing and reveals a form of matching between the statistics of natural images and those of normal eye movements. We further show that the combined effect of microscopic eye movements and retinal receptive field organization is to convert spatial luminance discontinuities into synchronous firing events, beginning the process of edge detection. Thus, microscopic eye movements are fundamental to two goals of early visual processing: redundancy reduction and feature extraction.
Project description:While hippocampal connectivity is essential to normal memory function, our knowledge of human hippocampal circuitry is largely inferred from animal studies. Using polarized light microscopy at 1.3 µm resolution, we have directly visualized the 3D course of key medial temporal pathways in 3 ex vivo human hemispheres and 2 ex vivo vervet monkey hemispheres. The multiple components of the perforant path system were clearly identified: Superficial sheets of fibers emanating from the entorhinal cortex project to the presubiculum and parasubiculum, intermixed transverse and longitudinal angular bundle fibers perforate the subiculum and then project to the cornu ammonis (CA) fields and dentate molecular layer, and a significant alvear component runs from the angular bundle to the CA fields. From the hilus, mossy fibers localize to regions of high kainate receptor density, and the endfolial pathway, mostly investigated in humans, merges with the Schaffer collaterals. This work defines human hippocampal pathways underlying mnemonic function at an unprecedented resolution.