Project description:PurposeCardiac radioablation (cRA) using a stereotactic single-session radioablative approach has recently been described as a possible treatment option for patients with otherwise untreatable recurrent ventricular tachycardia (VT). There is very limited experience in cRA for patients undergoing left ventricular assist device (LVAD) therapy. We present clinical experiences of two patients treated with cRA for incessant VT under long-term LVAD therapy.MethodsTwo male patients (54 and 61 years old) with terminal heart failure under LVAD therapy (both patients for 8 years) showed incessant VT despite extensive antiarrhythmic drug therapy and repeated catheter ablation. cRA with a single dose of 25 Gy was applied as a last resort strategy under compassionate use in both patients following an electroanatomical mapping procedure.ResultsBoth patients displayed ongoing VT during and after the cRA procedure. Repeated attempts at post-procedural rhythm conversion failed in both patients; however, one patient was hemodynamically stabilized and could be discharged home for several months before falling prey to a fatal bleeding complication. The second patient initially stabilized for a few days following cRA before renewed acceleration of running VT required bilateral ablation of the stellate ganglion; the patient died 50 days later. No immediate side effects of cRA were detected in either patient.ConclusioncRA might serve as a last resort strategy for patients with terminal heart failure undergoing LVAD therapy and displaying incessant VT. Intermediate- and long-term outcomes of these seriously ill patients often remain poor; therefore, best supportive care strategies should also be evaluated as long as no clear beneficial effects of cRA procedures can be shown. For patients treated with cRA under running ventricular rhythm abnormality, strategies for post-procedural generation of stabilized rhythm have to be established.
Project description:BackgroundCatecholaminergic polymorphic ventricular tachycardia (CPVT) is a severe genetic arrhythmogenic disorder characterized by adrenergically induced ventricular tachycardia manifesting as stress-induced syncope and sudden cardiac death. While CPVT is not associated with dilated cardiomyopathy (DCM) in most cases, the combination of both disease entities poses a major diagnostic and therapeutic challenge.Case summaryWe present the case of a young woman with CPVT. The clinical course since childhood was characterized by repetitive episodes of exercise-induced ventricular arrhythmias and a brady-tachy syndrome due to rapid paroxysmal atrial fibrillation and sinus bradycardia. Medical treatment included propranolol and flecainide until echocardiography showed a dilated left ventricle with severely depressed ejection fraction when the patient was 32 years old. Cardiac magnetic resonance imaging revealed non-specific late gadolinium enhancement. Myocardial inflammation, however, was excluded by subsequent endomyocardial biopsy. Genetic analysis confirmed a mutation in the cardiac ryanodine receptor but no pathogenetic variant associated with DCM. Guideline-directed medical therapy for HFrEF was limited due to symptomatic hypotension. Over the next months, the patient developed progressive heart failure symptoms that were finally managed by heart transplantation.DiscussionManagement in patients with CPVT and DCM is challenging, as Class I antiarrhythmic drugs are not recommended in structural heart disease and prophylactic internal cardioverter-defibrillator implantation without adjuvant antiarrhythmic therapy can be detrimental. Regular echocardiographic screening for DCM is recommendable in patients with CPVT. A multidisciplinary team of heart failure specialists, electrophysiologists, geneticists, and imaging specialists is needed to collaborate in the delivery of clinical care.
Project description:Sudden cardiac death is hypothesized to be one of the leading causes of mortality in peripartum cardiomyopathy. This case illustrates a patient who presented with cardiac arrest, and it discusses the importance of considering multiple causes of fulminant ventricular arrhythmias in the setting of decreased left ventricular function during the peripartum period. (Level of Difficulty: Advanced.).
Project description:BackgroundRespiratory motion management strategies are used to minimize the effects of breathing on the precision of stereotactic ablative radiotherapy for ventricular tachycardia, but the extent of cardiac contractile motion of the human heart has not been systematically explored.ObjectiveWe aim to assess the magnitude of cardiac contractile motion between different directions and locations in the heart.MethodsPatients with intracardiac leads or valves who underwent 4-dimensional cardiac computed tomography (CT) prior to a catheter ablation procedure for atrial or ventricular arrhythmias at 2 medical centers were studied retrospectively. The displacement of transvenous right atrial appendage, right ventricular (RV) implantable cardioverter-defibrillator, coronary sinus lead tips, and prosthetic cardiac devices across the cardiac cycle were measured in orthogonal 3-dimensional views on a maximal-intensity projection CT reconstruction.ResultsA total of 31 preablation cardiac 4-dimensional cardiac CT scans were analyzed. The LV lead tip had significantly greater motion compared with the RV lead in the anterior-posterior direction (6.0 ± 2.2 mm vs 3.8 ± 1.7 mm; P = .01) and superior-inferior direction (4.4 ± 2.9 mm vs 3.5 ± 2.0 mm; P = .049). The prosthetic aortic valves had the least movement of all fiducials, specifically compared with the RV lead tip in the left-right direction (3.2 ± 1.2 mm vs 6.1 ± 3.8 mm, P = .04) and the LV lead tip in the anterior-posterior direction (3.8 ± 1.7 mm vs 6.0 ± 2.2 mm, P = .03).ConclusionThe degree of cardiac contractile motion varies significantly (1 mm to 15.2 mm) across different locations in the heart. The effect of contractile motion on the precision of radiotherapy should be assessed on a patient-specific basis.
Project description:Short RP interval atrioventricular re-entrant tachycardias do not typically present as an incessant form. We present 2 cases of incessant atrioventricular re-entrant tachycardias leading to tachycardia-induced cardiomyopathy with severe heart failure presentation in middle-aged adults. Both underwent accessory pathway ablation and recovered normal left ventricle function before hospital discharge. (Level of Difficulty: Intermediate.).
Project description:Our aim was to identify biophysical biomarkers of ventricular remodelling in tachycardia-induced dilated cardiomyopathy (DCM). Our study includes healthy controls (N = 7) and DCM pigs (N = 10). Molecular analysis showed global myocardial metabolic abnormalities, some of them related to myocardial hibernation in failing hearts, supporting the translationality of our model to study cardiac remodelling in dilated cardiomyopathy. Histological analysis showed unorganized and agglomerated collagen accumulation in the dilated ventricles and a higher percentage of fibrosis in the right (RV) than in the left (LV) ventricle (P = .016). The Fourier Transform Infrared Spectroscopy (FTIR) 1st and 2nd indicators, which are markers of the myofiber/collagen ratio, were reduced in dilated hearts, with the 1st indicator reduced by 45% and 53% in the RV and LV, respectively, and the 2nd indicator reduced by 25% in the RV. The 3rd FTIR indicator, a marker of the carbohydrate/lipid ratio, was up-regulated in the right and left dilated ventricles but to a greater extent in the RV (2.60-fold vs 1.61-fold, P = .049). Differential scanning calorimetry (DSC) showed a depression of the freezable water melting point in DCM ventricles - indicating structural changes in the tissue architecture - and lower protein stability. Our results suggest that the 1st, 2nd and 3rd FTIR indicators are useful markers of cardiac remodelling. Moreover, the 2nd and 3rd FITR indicators, which are altered to a greater extent in the right ventricle, are associated with greater fibrosis.
Project description:BackgroundThe COVID-19 is an infectious disease, caused by SARS-CoV-2 virus. Cardiovascular complications of COVID-19 are reported more often, from inflammatory cardiac diseases to acute coronary syndromes, thromboembolic events and arrhythmias. Sometimes, these arrhythmias may be life threatening and require urgent intervention.Case summaryThis is a case of one-year-old boy, who was referred to our hospital because of premature ventricular complexes on ECG. The child had genetic chimerism with a karyotype of 46XY(12)/46XX(3) and small patent ductus arteriosus. We observed non-sustained episodes of bidirectional ventricular tachycardia (VT) on 24 h Holter monitor, which increased over time and caused multiple planned and urgent shocks, despite antiarrhythmic drugs and deep sedation and intubation. Patient was tested positive for COVID-19 using PCR. After thorough echocardiographic testing and a negative genetic analysis for arrhythmogenic disorders he was diagnosed with COVID-19 associated ventricular tachycardia, taking into account that he also developed multisystem inflammatory syndrome. Further, a significant decrease of ventricular activity was observed, which allowed us to implant a cardioverter-defibrillator (ICD). Soon after the implantation the storm of ventricular tachycardia restarted with multiple shocks of the device. This time left partial thoracic sympathectomy was performed and the patient didn't have ICD shocks any more.DiscussionCOVID-19 infection can be associated with significant arrhythmias, including fatal ventricular arrhythmias also in children. Left partial thoracic sympathectomy can be a helpful option in patients with sustained ventricular tachycardia and multiple ICD shocks, in whom antiarrhythmic treatment or VT ablation is useless or not available.
Project description:Introduction:Myocarditis, inflammation of the heart muscle, can be caused by infections, autoimmune disease or exposure to toxins. The major cause of myocarditis in the paediatric population is viral infection, including coxsackievirus B3, adenovirus, herpesvirus, parvovirus, influenza A and B, and hepatitis. Here, we report the detection of rhinovirus C in a boy with a clinical presentation of myocarditis, suggesting a possible causative role of this virus in this case. Case presentation:A previously well 4.5-year-old boy presented with increasing breathlessness for a week prior to admission. He also had upper respiratory tract infection a few days before the event. An echocardiogram revealed severe left ventricle (LV) systolic dysfunction with dilation of the LV. RNA was extracted from serum and two nasal swabs, and tested with conventional PCR at the family level for viruses including enterovirus, dengue, chikungunya, influenza, herpesvirus, paramyxovirus and coronavirus. Further characterization of the enterovirus group was carried out using PCR with primers targeting the VP4/VP2 gene, followed by sequencing. Molecular tests showed the presence of rhinovirus C genetic material in both serum and swab samples. Phylogenetic analysis of the VP4/VP2 region showed 96-97?%?similarity with the closest strain isolated in Ulaanbaatar (Mongolia) and Japan in 2012. Conclusion:We report the possible association of rhinovirus C and myocarditis in a child presenting with acute onset of dilated cardiomyopathy.
Project description:BACKGROUND:Case studies have suggested the efficacy of catheter-free, electrophysiology-guided noninvasive cardiac radioablation for ventricular tachycardia (VT) using stereotactic body radiation therapy, although prospective data are lacking. METHODS:We conducted a prospective phase I/II trial of noninvasive cardiac radioablation in adults with treatment-refractory episodes of VT or cardiomyopathy related to premature ventricular contractions (PVCs). Arrhythmogenic scar regions were targeted by combining noninvasive anatomic and electric cardiac imaging with a standard stereotactic body radiation therapy workflow followed by delivery of a single fraction of 25 Gy to the target. The primary safety end point was treatment-related serious adverse events in the first 90 days. The primary efficacy end point was any reduction in VT episodes (tracked by indwelling implantable cardioverter defibrillators) or any reduction in PVC burden (as measured by a 24-hour Holter monitor) comparing the 6 months before and after treatment (with a 6-week blanking window after treatment). Health-related quality of life was assessed using the Short Form-36 questionnaire. RESULTS:Nineteen patients were enrolled (17 for VT, 2 for PVC cardiomyopathy). Median noninvasive ablation time was 15.3 minutes (range, 5.4-32.3). In the first 90 days, 2/19 patients (10.5%) developed a treatment-related serious adverse event. The median number of VT episodes was reduced from 119 (range, 4-292) to 3 (range, 0-31; P<0.001). Reduction was observed for both implantable cardioverter defibrillator shocks and antitachycardia pacing. VT episodes or PVC burden were reduced in 17/18 evaluable patients (94%). The frequency of VT episodes or PVC burden was reduced by 75% in 89% of patients. Overall survival was 89% at 6 months and 72% at 12 months. Use of dual antiarrhythmic medications decreased from 59% to 12% ( P=0.008). Quality of life improved in 5 of 9 Short Form-36 domains at 6 months. CONCLUSIONS:Noninvasive electrophysiology-guided cardiac radioablation is associated with markedly reduced ventricular arrhythmia burden with modest short-term risks, reduction in antiarrhythmic drug use, and improvement in quality of life. CLINICAL TRIAL REGISTRATION:URL: https://www.clinicaltrials.gov/ . Unique identifier: NCT02919618.