Project description:Improved understanding of tumor immunology has enabled the development of therapies that harness the immune system and prevent immune escape. Numerous clinical trials and real-world experience has provided evidence of the potential for long-term survival with immunotherapy in various types of malignancy. Recurring observations with immuno-oncology agents include their potential for clinical application across a broad patient population with different tumor types, conventional and unconventional response patterns, durable responses, and immune-related adverse events. Despite the substantial achievements to date, a significant proportion of patients still fail to benefit from current immunotherapy options, and ongoing research is focused on transforming non-responders to responders through the development of novel treatments, new strategies to combination therapy, adjuvant and neoadjuvant approaches, and the identification of biomarkers of response. These topics were the focus of the virtual Immunotherapy Bridge (December 2nd-3rd, 2020), organized by the Fondazione Melanoma Onlus, Naples, Italy, in collaboration with the Society for Immunotherapy of Cancer and are summarised in this report.
Project description:Advances in immune checkpoint therapy and targeted therapy have led to improvement in overall survival for patients with advanced melanoma. Single agent checkpoint PD-1 blockade and combination with BRAF/MEK targeted therapy demonstrated benefit in overall survival (OS). Superior response rates have been demonstrated with combined PD-1/CTLA-4 blockade, with a significant OS benefit compared with single-agent PD-1 blockade. Despite the progress in diagnosis of melanocytic lesions, correct classification of patients, selection of appropriate adjuvant and systemic therapies, and prediction of response to therapy remain real challenges in melanoma. Improved understanding of the tumor microenvironment, tumor immunity and response to therapy has prompted extensive translational and clinical research in melanoma. Development of novel biomarker platforms may help to improve diagnostics and predictive accuracy for selection of patients for specific treatment. There is a growing evidence that genomic and immune features of pre-treatment tumor biopsies may correlate with response in patients with melanoma and other cancers but they have yet to be fully characterized and implemented clinically. Overall, the progress in melanoma therapeutics and translational research will help to optimize treatment regimens to overcome resistance and develop robust biomarkers to guide clinical decision-making. During the Melanoma Bridge meeting (December 3rd-5th, 2020, Italy) we reviewed the currently approved systemic and local therapies for advanced melanoma and discussed novel biomarker strategies and advances in precision medicine.
Project description:Harnessing the immune system and preventing immune escape, the immunotherapy of cancer provides great potential for clinical application, in broad patient populations, achieving both conventional and unconventional clinical responses. After the substantial advances in melanoma, the focus of cancer immunotherapy has expanded to include many other cancers. Targeting immune checkpoints and further mechanisms used by tumors to avoid anticancer immunity, different approaches are under evaluation, including combination therapies. The first Immunotherapy Bridge meeting focused on various cancer types including melanoma, non-small cell lung cancer, renal cell, breast and ovarian carcinoma, and discussed mechanisms of action of single agents and combination strategies, and the prediction of clinical responses.
Project description:The complex interactions between the immune system and tumors lead the identification of key molecules that govern these interactions: immunotherapeutics were designed to overcome the mechanisms broken by tumors to evade immune destruction. After the substantial advances in melanoma, immunotherapy currently includes many other type of cancers, but the melanoma lesson is essential to progress in other type of cancers, since immunotherapy is potentially improving clinical outcome in various solid and haematologic malignancies. Monotherapy in pre-treated NSCLC is studied and the use of nivolumab, pembrolizumab and atezolizumab as second-line of advanced NSCLC is demonstrated as well as first line monotherapy and combination therapy in metastatic NSCLC studied. Patients with HNSCC have immunotherapeutic promises as well: the FDA recently approved moAbs targeting immune checkpoint receptors. Nivolumab in combination with ipilumumab showed acceptable safety and encouraging antitumor activity in metastatic renal carcinoma. HCCs have significant amounts of genomic heterogeneity and multiple oncogenic pathways can be activated: the best therapeutic targets identification is ongoing. The treatment of advanced/relapsed EOC remain clearly an unmet need: a better understanding of the relevant immuno-oncologic pathways and their corresponding biomarkers are required. UC is an immunotherapy-responsive disease: after atezolizumab, three other PD-L1/PD-L1 inhibitors (nivolumab, durvalumab, and avelumab) were approved for treatment of platinum-refractory metastatic urothelial carcinoma. Anti-PD-1/PD-L1 monotherapy is associated with a modest response rate in metastatic breast cancer; the addition of chemotherapy is associated with higher response rates. Immunotherapy safety profile is advantageous, although, in contrast to conventional chemotherapy: boosting the immune system leads to a unique constellation of inflammatory toxicities known as immune-related Adverse Events (irAEs) that may warrant the discontinuation of therapy and/or the administration of immunosuppressive agents. Research should explore better combination with less side effects, the right duration of treatments, combination or sequencing treatments with target therapies. At present, treatment decision is based on patient's characteristics.