Project description:Claudins are tight junction proteins that are involved in tight junction formation and function. Previous studies have shown that claudin-7 is frequently upregulated in epithelial ovarian cancer (EOC) along with claudin-3 and claudin-4. Here, we investigate in detail the expression patterns of claudin-7, as well as its possible functions in EOC.A total of 95 ovarian tissue samples (7 normal ovarian tissues, 65 serous carcinomas, 11 clear cell carcinomas, 8 endometrioid carcinomas and 4 mucinous carcinomas) were studied for claudin-7 expression. In real-time RT-PCR analysis, the gene for claudin-7, CLDN7, was found to be upregulated in all the tumor tissue samples studied. Similarly, immunohistochemical analysis and western blotting showed that claudin-7 protein was significantly overexpressed in the vast majority of EOCs. Small interfering RNA-mediated knockdown of claudin-7 in ovarian cancer cells led to significant changes in gene expression as measured by microarrays and validated by RT-PCR and immunoblotting. Analyses of the genes differentially expressed revealed that the genes altered in response to claudin-7 knockdown were associated with pathways implicated in various molecular and cellular functions such as cell cycle, cellular growth and proliferation, cell death, development, and cell movement. Through functional experiments in vitro, we found that both migration and invasion were altered in cells where CLDN7 had been knocked down or overexpressed. Interestingly, claudin-7 expression was associated with a net increase in invasion, but also with a decrease in migration.Our work shows that claudin-7 is significantly upregulated in EOC and that it may be functionally involved in ovarian carcinoma invasion. CLDN7 may therefore represent potential marker for ovarian cancer detection and a target for therapy.
Project description:Epithelial splicing regulatory protein 1 (ESRP1) and 2 (ESRP2), epithelial cell-specific regulators of alternative splicing, are downregulated during the epithelial-mesenchymal transition (EMT). These factors have roles in tumor progression and metastasis in some cancers; however, their expression and function in ovarian cancer (OC) remain unclear. We found that ESRP1 and ESRP2 mRNAs were expressed at higher levels in OC cells than in immortalized ovarian surface epithelial (IOSE) cells, and confirmed their overexpression in OC tissues at the protein level. The Cancer Genome Atlas (TCGA) data analysis revealed frequent gene amplification of ESRP1 in OC tissues; however, we detected no significant correlation between ESRP1 gene copy number and gene expression in OC cells. Importantly, expression of ESRP1 and ESRP2 was inversely correlated with DNA methylation in OC cells, and ESRP2 overexpression in OC tissues was significantly associated with DNA hypomethylation. Notably, survival analysis using TCGA data from 541 OC tissues revealed that high ESRP1 expression was significantly associated with shorter 5-year survival of patients. Ectopic ESRP1 expression in mesenchymal OC cells promoted cell proliferation but suppressed cell migration. Furthermore, we found that ESRP1 drives a switch from mesenchymal to epithelial phenotype characterized by reduced cell migration in association with induction of epithelial cell-specific variant of CD44 and ENAH. Taken together, our findings suggest that an epigenetic mechanism is involved in ESRP1 overexpression, and that ESRP1 has a role in OC progression.
Project description:Ovarian carcinoma is a highly lethal malignancy due to frequent relapse and drug resistance. Cancer stem cells (CSCs) are thought to contribute significantly to disease relapse and drug resistance. In this study, a subpopulation of CSCs of ovarian carcinoma was isolated and the genes differentially expressed in these cells were identified to characterize CSCs and to find candidate biomarkers. Ovarian carcinoma cells from patients were primarily cultured, and spheroid-forming cells (SFCs) were isolated. The characteristic genes of SFCs were identified through cDNA microarray and validation by quantitative real-time polymerase chain reaction and immunohistochemistry, and the association of their expression with clinicopathologic parameters was analyzed. GSC (4.26-fold), VAV3 (7.05-fold), FOXA2 (12.06-fold), LEF1 (17.26-fold), COMP (21.33-fold), GRIN2A (9.36-fold), CD86 (23.14-fold), PYY (4.18-fold), NKX3-2 (10.35-fold), and PDK4 (74.26-fold) were significantly upregulated in SFCs compared with parental cancer cells. With validation for human ovarian carcinomas, LEF1, PYY, NKX3-2, and WNT3A were significantly upregulated in chemoresistant cancers compared with chemosensitive cancers. Overexpression of LEF1, VAV3, and NKX3-2 was significantly associated with distant metastasis by immunohistochemistry. VAV3 overexpression was an independent poor survival indicator (hazard ratio=15.27, P<0.05) by multivariate Cox analysis. The further functional assay revealed that VAV3 knockdown regulated CSC activation and ovarian cancer cell proliferation and sensitized paclitaxel (PTX)-resistant cancer cells to PTX treatment. Taken together, we identified by high-throughput analysis of CSCs that VAV3 overexpression is a novel biomarker for poor prognosis and survival in ovarian carcinoma.
Project description:Epithelial Ovarian Cancer (EOC) is the most lethal gynecological cancer in developed countries, and the development of new strategies to overcome chemoresistance is an awaited clinical need. Angiogenesis, the development of new blood vessels from pre-existing vasculature, has been validated as a therapeutic target in this tumor type. The aim of this study is to verify if EOC cells with acquired resistance to platinum (PT) treatment display an altered angiogenic potential. Using a proteomic approach, we identified the tissue inhibitor of metalloproteinases 1 (TIMP-1) as the only secreted factor whose expression was up-regulated in PT-resistant TOV-112D and OVSAHO EOC cells used as study models. We report that TIMP-1 acts as a double-edged sword in the EOC microenvironment, directly affecting the response to PT treatment on tumor cells and indirectly altering migration and proliferation of endothelial cells. Interestingly, we found that high TIMP-1 levels in stage III-IV EOC patients associate with decreased overall survival, especially if they were treated with PT or bevacizumab. Taken together, these results pinpoint TIMP-1 as a key molecule involved in the regulation of EOC PT-resistance and progression disclosing the possibility that it could be used as a new biomarker of PT-resistance and/or therapeutic target.
Project description:BackgroundMetastasis, the leading cause of cancer-related death in patients diagnosed with ovarian cancer (OC), is a complex process that involves multiple biological effects. With the continuous development of sequencing technology, single-cell sequence has emerged as a promising strategy to understand the pathogenesis of ovarian cancer.MethodsThrough integrating 10 × single-cell data from 12 samples, we developed a single-cell map of primary and metastatic OC. By copy-number variations analysis, pseudotime analysis, enrichment analysis, and cell-cell communication analysis, we explored the heterogeneity among OC cells. We performed differential expression analysis and high dimensional weighted gene co-expression network analysis to identify the hub genes of C4. The effects of RAB13 on OC cell lines were validated in vitro.ResultsWe discovered a cell subcluster, referred to as C4, that is closely associated with metastasis and poor prognosis in OC. This subcluster correlated with an epithelial-mesenchymal transition (EMT) and angiogenesis signature and RAB13 was identified as the key marker of it. Downregulation of RAB13 resulted in a reduction of OC cells migration and invasion. Additionally, we predicted several potential drugs that might inhibit RAB13.ConclusionsOur study has identified a cell subcluster that is closely linked to metastasis in OC, and we have also identified RAB13 as its hub gene that has great potential to become a new therapeutic target for OC.
Project description:Optimal debulking followed by chemotherapy is the standard treatment of managing late-stage ovarian cancer, but chemoresistance is still a major problem. In this study, we compared expression profiles of primary tumor tissue from five long-term (>8 years) and five short-term (<2 years) ovarian cancer survivors and identified clusterin as one of the genes that were significantly up-regulated in short-term survivors. We then evaluated the prognostic significance of clusterin and its possible correlation with chemoresistance in ovarian cancer by immunohistostaining of clusterin in 62 tumor samples from patients with stage III, high-grade serous ovarian cancer. After adjusting for debulking status and age, Cox regression analyses showed that high levels of clusterin expression correlate with poor survival (hazard ratio, 1.07; 95% confidence interval, 1.002-1.443; P = .04). We also investigated clusterin in paclitaxel resistance by modulating the endogenous clusterin expression in ovarian cancer cells and treating the cells with purified clusterin. Results indicate that high-clusterin-expressing ovarian cancer cells are more resistant to paclitaxel. Moreover, exposing ovarian cancer cells to exogenous clusterin increases cells' resistance to paclitaxel. Finally, using size exclusion chromatography and fluorescently labeled paclitaxel, we demonstrated that clusterin binds to paclitaxel. In summary, our findings suggest that high levels of clusterin expression increase paclitaxel resistance in ovarian cancer cells by physically binding to paclitaxel, which may prevent paclitaxel from interacting with microtubules to induce apoptosis. Thus, clusterin is a potential therapeutic target for enhancing chemoresponsiveness in patients with a high-level clusterin expression.
Project description:Claudins are tight junction proteins that are involved in tight junction formation and function. Previous studies have shown that claudin-7 is frequently upregulated in epithelial ovarian cancer (EOC) along with claudin-3 and claudin-4. Here, we investigate in detail the expression patterns of claudin-7, as well as its possible functions in EOC. Initially a total of 95 ovarian tissue samples (7 normal ovarian tissues, 65 serous carcinomas, 11 clear cell carcinomas, 8 endometrioid carcinomas and 4 mucinous carcinomas) were studied for claudin-7 expression using RT-PCR analysis. The gene for claudin-7, CLDN7, was found to be significantly upregulated in all the tumor tissue samples studied. Similarly, immunohistochemical analysis and western blotting showed that claudin-7 protein was significantly overexpressed in the vast majority of EOCs. Two cell lines(OVCAR-2 and OVCA420) were chosen for microarray based gene expression analysis using small interfering RNA-mediated(SiRNA) knockdown of claudin-7. This treatment led to significant changes in gene expression that was validated by RT-PCR and immunoblotting. Ovarian cancer lines OVCA420 and OVCAR-2 were cultured in duplicate in McCoy’s 5A growth medium (Invitrogen) supplemented with 10% fetal bovine serum (FBS) and antibiotics (100 units/ml penicillin and 100 mg/ml streptomycin). Cells cultured in 6-well plates were transfected with either Claudin-7 specific siRNA oligos duplexes (Ambion, Inc.Austin, TX) or control siRNA #1 (Dharmacon) using LipofectAMINE 2000 (Invitrogen). Cells were treated for 72 hours to allow maximum knockdown, after which they were harvested for RNA preparation. Total RNA, was extracted using Trizol, quality and quantity were checked using the Agilent 2100 Bioanalyzer with RNA 6000 Nano chip, (Agilent Technologies UK Ltd, West Lothian, UK). Biotinylated cRNA was generated using the Illumina TotalPrep RNA Amplification Kit (Ambion; Austin, TX) starting with approximately 500 ng total RNA. Hybridization of the cRNA was to the Sentrix HumanRef-8 Expression BeadChip (Illumina, Inc., San Diego, CA). Microarray data processing and analysis was performed using Illumina Bead Studio software. Hierarchical clustering analysis of the significant genes was done using the JMP 6.0.0 software. Validation of the expression patterns of selected genes was performed using RT-PCR.
Project description:IntroductionExosomal microRNA (miRNA) as a mediator of intercellular communication plays an essential part in tumor-relevant angiogenesis. Therapy against angiogenesis has been demonstrated to have a remarkable antitumor efficacy in various malignancies, but not as expected in ovarian cancer.MethodsExosomes were isolated by ultracentrifugation. Exosomal miRNA sequencing and gene function experiments were used to identify the differential expressed miRNAs in exosomes and their mRNA targets. SKOV3 cell line that stably overexpressed miR-92b-3p was constructed by lentivirus. In vitro, angiogenesis was analyzed by tube formation assay and migration assay. The angiogenic and antitumor effects in vivo were assessed in zebrafish and nude mouse models. Combination index was calculated to assess the synergetic inhibition of angiogenesis between miR-92b-3p and Apatinib. Peptides were conjugated with exosomal membranes to obtain engineered exosomes.ResultsOvarian cancer cell-derived exosomes facilitated the angiogenesis and migration capability of vascular endothelial cells in vitro and in vivo. The expression of miR-92b-3p was much lower in ovarian cancer cell-derived exosomes than that in immortalized ovarian epithelial cell-derived exosomes. The exosomal miR-92b-3p modulated tumor-associated angiogenesis via targeting SOX4. Besides, Peptide-engineered exosomes with overexpressed miR-92b-3p showed the stronger abilities of anti-angiogenesis and antitumor than parental exosomes, whether alone or combined with Apatinib.ConclusionsOur findings demonstrate the effect and mechanism of exosomal miR-92b-3p from ovarian cancer cells on tumor-associated angiogenesis and the potential of artificially generated exosomes with overexpressed miR-92b-3p to be used as anti-angiogenic agent, which may provide a new approach for anti-angiogenic therapy of ovarian cancer.
Project description:Epithelial Ovarian Cancer (EOC) is associated with dismal survival rates due to the fact that patients are frequently diagnosed at an advanced stage and eventually become resistant to traditional chemotherapeutics. Hence, there is a crucial need for new and innovative therapies. Septin-2, a member of the septin family of GTP binding proteins, has been characterized in EOC for the first time and represents a potential future target. Septin-2 was found to be overexpressed in serous and clear cell human patient tissue compared to benign disease. Stable septin-2 knockdown clones developed in an ovarian cancer cell line exhibited a significant decrease in proliferation rates. Comparative label-free proteomic analysis of septin-2 knockdown cells revealed differential protein expression of pathways associated with the TCA cycle, acetyl CoA, proteasome and spliceosome. Further validation of target proteins indicated that septin-2 plays a predominant role in post-transcriptional and translational modifications as well as cellular metabolism, and suggested the potential novel role of septin-2 in promoting EOC tumorigenesis through these mechanisms.
Project description:Claudins are tight junction proteins that are involved in tight junction formation and function. Previous studies have shown that claudin-7 is frequently upregulated in epithelial ovarian cancer (EOC) along with claudin-3 and claudin-4. Here, we investigate in detail the expression patterns of claudin-7, as well as its possible functions in EOC. Initially a total of 95 ovarian tissue samples (7 normal ovarian tissues, 65 serous carcinomas, 11 clear cell carcinomas, 8 endometrioid carcinomas and 4 mucinous carcinomas) were studied for claudin-7 expression using RT-PCR analysis. The gene for claudin-7, CLDN7, was found to be significantly upregulated in all the tumor tissue samples studied. Similarly, immunohistochemical analysis and western blotting showed that claudin-7 protein was significantly overexpressed in the vast majority of EOCs. Two cell lines(OVCAR-2 and OVCA420) were chosen for microarray based gene expression analysis using small interfering RNA-mediated(SiRNA) knockdown of claudin-7. This treatment led to significant changes in gene expression that was validated by RT-PCR and immunoblotting.