Project description:ObjectivesUltrasound-guided regional anesthesia (UGRA) can be a powerful tool in the treatment of painful conditions commonly encountered in emergency medicine (EM) practice. UGRA can benefit patients while avoiding the risks of procedural sedation and opioid-based systemic analgesia. Despite these advantages, many EM trainees do not receive focused education in UGRA and there is no published curriculum specifically for EM physicians. The objective of this study was to identify the components of a UGRA curriculum for EM physicians.MethodsA list of potential curriculum elements was developed through an extensive literature review. An expert panel was convened that included 13 ultrasound faculty members from 12 institutions and from a variety of practice environments and diverse geographical regions. The panel voted on curriculum elements through two rounds of a modified Delphi process.ResultsThe panelists voted on 178 total elements, 110 background knowledge elements, and 68 individual UGRA techniques. A high level of agreement was achieved for 65 background knowledge elements from the categories: benefits to providers and patients, indications, contraindications, risks, ultrasound skills, procedural skills, sterile technique, local anesthetics, and educational resources. Ten UGRA techniques achieved consensus: interscalene brachial plexus, supraclavicular brachial plexus, radial nerve, median nerve, ulnar nerve, serratus anterior plane, fascia iliaca, femoral nerve, popliteal sciatic nerve, and posterior tibial nerve blocks.ConclusionsThe defined curriculum represents ultrasound expert opinion on a curriculum for training practicing EM physicians. This curriculum can be used to guide the development and implementation of more robust UGRA education for both residents and independent providers.
Project description:BackgroundRegional anesthesia is increasingly used in acute postoperative pain management. Ultrasound has been used to facilitate the performance of the regional block, increase the percentage of successfully performed procedures and reduce the complication rate. Artificial intelligence (AI) has been studied in many medical disciplines with achieving high success, especially in radiology. The purpose of this review was to review the evidence on the application of artificial intelligence for optimization and interpretation of the sonographic image, and visualization of needle advancement and injection of local anesthetic.MethodsTo conduct this scoping review, we followed the PRISMA-S guidelines. We included studies if they met the following criteria: (1) Application of Artificial intelligence-assisted in ultrasound-guided regional anesthesia; (2) Any human subject (of any age), object (manikin), or animal; (3) Study design: prospective, retrospective, RCTs; (4) Any method of regional anesthesia (epidural, spinal anesthesia, peripheral nerves); (5) Any anatomical localization of regional anesthesia (any nerve or plexus) (6) Any methods of artificial intelligence; (7) Settings: Any healthcare settings (Medical centers, hospitals, clinics, laboratories.ResultsThe systematic searches identified 78 citations. After the removal of the duplicates, 19 full-text articles were assessed; and 15 studies were eligible for inclusion in the review.ConclusionsAI solutions might be useful in anatomical landmark identification, reducing or even avoiding possible complications. AI-guided solutions can improve the optimization and interpretation of the sonographic image, visualization of needle advancement, and injection of local anesthetic. AI-guided solutions might improve the training process in UGRA. Although significant progress has been made in the application of AI-guided UGRA, randomized control trials are still missing.
Project description:Pediatric patients face multiple reconstructive surgeries to reestablish function and aesthetics postburn injury. Often, the site of the harvested graft for these reconstructions is reported to be the most painful part of the procedure and a common reason for deferring these reconstructive procedures. This study in pediatric burn patients undergoing reconstructive procedures examined the analgesia response to local anesthetic infiltration versus either a single ultrasound-guided regional nerve block of the lateral femoral cutaneous nerve (LFCN) or a fascia iliaca compartment block with catheter placement and continuous infusion. Nineteen patients were randomized to one of three groups (infiltration, single-shot nerve block, or compartment block with catheter) and received intraoperative analgesia intervention. Postoperatively, visual analog scale pain scores were recorded-for pain at the donor site-every 4 hours while awake-for 48 hours. This nonparametric data was analyzed using a two-way ANOVA, Friedman's test, and Kruskal-Wallis test, with significance determined at P < 0.05. The analysis demonstrated that the patients in the regional anesthesia groups were significantly more comfortable over the 48 hour hospital course than the patients in the control group. The patients receiving a single-shot block of the LFCN were more comfortable on postoperative day (POD) 0 while the catheter patients were more comfortable on POD 1 and POD 2. There was not a statistically significant difference in opioid requirements in any group. Regional anesthetic block of the LFCN, with or without catheter placement, provides an improved postoperative experience for the pediatric patient undergoing reconstructive surgery with lateral/anterolateral skin graft versus local anesthesia infiltration of donor site. For optimal comfort throughout the postoperative period, an ultrasound-guided block with continuous catheter may be beneficial.
Project description:With the advent of fast-track pathways after cardiac surgery, there has been a renewed interest in regional anesthesia due to its opioid-sparing effect. This paradigm shift, looking to improve resource allocation efficiency and hasten postoperative extubation and mobilization, has been pursued by nearly every specialty area in surgery. Safety concerns regarding the use of classical neuraxial techniques in anticoagulated patients have tempered the application of regional anesthesia in cardiac surgery. Recently described ultrasound-guided thoracic wall blocks have emerged as valuable alternatives to epidurals and landmark-driven paravertebral and intercostal blocks. These novel procedures enable safe, effective, opioid-free pain control. Although experience within this field is still at an early stage, available evidence indicates that their use is poised to grow and may become integral to enhanced recovery pathways for cardiac surgery patients.
Project description:IntroductionDespite the inclusion of both diagnostic and procedural ultrasound and regional nerve blocks in the original Model of the Clinical Practice of Emergency Medicine (EM), there is no recommended standardized approach to the incorporation of ultrasound-guided regional anesthesia (UGRA) education in EM training.MethodsWe developed and implemented a structured curriculum for both EM residents and faculty to learn UGRA in a four-hour workshop. Each Regional Anesthesia Anatomy and Ultrasound Workshop was four hours in length and followed the same format. Focusing on common UGRA blocks, each workshop began with an anatomist-led cadaveric review of the relevant neuromusculoskeletal anatomy followed by a hands-on ultrasound scanning practice for the blocks led by an ultrasound fellowship-trained EM faculty member, fellow, or a postgraduate year (PGY)-4 resident who had previously participated in the workshop. Learners identified the relevant anatomy on point-of-care ultrasound and reviewed how to conduct the blocks. Learners were invited to complete an evaluation of the workshop with Likert-scale and open-ended questions.ResultsIn the 2020 academic year, six regional anesthesia anatomy and ultrasound workshops occurred for EM faculty (two sessions, N = 24) and EM residents (four sessions, N = 40, including a total of five PGY4s, 10 PGY3s, 12 PGY2s, and 13 PGY1s). Workshops were universally well-received by both faculty and residents. Survey results found that 100.0% of all responding participants indicated that they were "very satisfied" with the session. All were likely to recommend this session to a colleague and 95.08% of participants believed the session should become a required component of the EM curriculum.ConclusionThe use of UGRA is increasing, and and it critical in EM. An interdisciplinary approach in collaboration with anatomists on an interactive, nerve block workshop incorporating both gross anatomy review and hands-on scanning was shown to be well-received and desired by both EM faculty and residents.
Project description:BackgroundThe aim of this study was to compare anesthesiology residents' acquisition of gripping and needling skills in either single-or double-operator ultrasound-guided nerve block using a hand-made phantom.DesignProspective, randomized controlled study.MethodsAfter a tutorial session, 47 ultrasound-novice residents performed needling with double and single operator (Jedi, Bedforth, On-lock) grip techniques in each of the 3 interventional task sessions.ResultsThe time to perform the correct grip and needling decreased significantly between sessions for each technique (P < .001). While the double operator tasks required a shorter time than the single operator tasks in all 3 sessions (P < .001), there was no significant difference between the single-operator techniques. The number of needling attempts was similar between techniques and sessions. Participants rated the workload higher for the single-operator techniques on the National Aeronautics and Space Administration Task Load Index.ConclusionHands-on training of phantom models may be beneficial for the acquisition of single-operator grip skills.
Project description:Anesthesiologists who have finished formal training and want to learn ultrasound-guided regional anesthesia (UGRA) commonly attend 1 day workshops. However, it is unclear whether participation actually changes clinical practice. We assessed change implementation after completion of a 1 day simulation-based UGRA workshop.Practicing anesthesiologists who participated in a 1 day UGRA course from January 2012 through May 2014 were surveyed. The course consisted of clinical observation of UGRA procedures, didactic lectures, ultrasound scanning, hands-on perineural catheter placement, and mannequin simulation. The primary outcome was the average number of UGRA blocks per month reported at follow-up versus baseline. Secondary outcomes included preference for ultrasound as the nerve localization technique, ratings of UGRA teaching methods, and obstacles to performing UGRA.Survey data from 46 course participants (60% response rate) were included for analysis. Participants were (median [10th-90th percentile]) 50 (37-63) years old, had been in practice for 17 (5-30) years, and were surveyed 27 (10-34) months after their UGRA training. Participants reported performing 24 (4-90) blocks per month at follow-up compared to 10 (2-24) blocks at baseline (P < 0.001). Compared to baseline, more participants at follow-up preferred ultrasound for nerve localization. The major obstacle to implementing UGRA in clinical practice was time pressure.Participation in a 1 day simulation-based UGRA course may increase UGRA procedural volume by practicing anesthesiologists.
Project description:BackgroundUltrasound-guided regional anesthesia (UGRA) is increasingly used by emergency physicians to provide safe and effective pain relief for patients. However, one of the factors limiting its widespread use is the lack of realistic models available for learners to train on. There are currently no inexpensive nerve block models available that are injectable and that closely mimic nerves, fascial planes, muscles, and other landmarks. Our aim is to create inexpensive, injectable nerve block models that can be used as effective medical training tools for UGRA.MethodsBy using a lean cut of pork such as pork loin, yarn soaked in ultrasound gel to simulate peripheral nerves, and drinking straws filled with gel to represent vascular structures, we created various nerve block models. Meat glue applied between sections of meat appears hyperechoic under ultrasound, thereby mimicking fascial planes and has the added benefit of helping to secure the components of the model together. Using these elements, we were able to create realistic peripheral nerve, fascia iliaca compartment, serratus anterior plane, and interscalene brachial plexus models.ResultsOne of the necessary skills in performing UGRA involves placing the needle tip along a fascial plane and visualizing hydrodissection of this plane with the local anesthetic. When meat glue (transglutaminase) is applied between layers of meat such as pork loin, the meat binds together and creates a hyperechoic line that mimics a fascial plane. When meat glue is applied to two apposing fascial layers naturally occurring on the meat, the fascial plane can be injected, and fluid can be seen hydrodissecting in this space. We created several nerve block models using meat glue and other components to mimic normal landmarks.ConclusionsWe have developed inexpensive and easily reproducible models that create the realistic appearance of tissues, nerves, and fascial planes under ultrasound. They can also accurately simulate hydrodissection of fluid in fascial planes. We hope these nerve block models will allow for the education in UGRA to be more widespread and accessible to learners from all specialties.
Project description:Piriformis syndrome is an elusive condition that likely is overlooked and overdiagnosed in equal proportions. Image-guided injection of the muscle is an essential element in the assessment and management of this disorder. Ultrasonography allows visualization of the anatomy of the piriformis and its relation with the sciatic nerve. Ultrasound-guided injection of the muscle can be performed in an effective, reproducible fashion and, with careful attention to the details of the procedure, can be performed with minimal morbidity to the patient. This method has the advantage of being exceptionally well tolerated by the patient and can be performed in the office with minimal patient inconvenience and the opportunity for a real-time assessment of the patient's response to the injection. Our ultrasound-guided technique of piriformis muscle injection is detailed in this article.
Project description:Ultrasound (US) is used with a minimally invasive cutting device to perform carpal tunnel release with a 3 mm wrist incision. US localizes tendons, arteries, and median nerve for safe introduction of the device into the wrist. The device is inserted in a blunt configuration under the flexor retinaculum, and a cutting wire is deployed that advances a 0.9-mm needle in the palm. The surgeon releases the flexor retinaculum from the inside out through the two skin punctures. Flexor retinaculum release is confirmed with US.