Project description:Conradi-Hünermann-Happle syndrome, or X-linked dominant chondrodysplasia punctata type 2 (CDPX2), is a genodermatosis caused by mutations in EBP. While typically lethal in males, females with CDPX2 generally manifest by infancy or childhood with variable features including congenital ichthyosiform erythroderma, chondrodysplasia punctata, asymmetric shortening of the long bones, and cataracts. We present a 36-year-old female with short stature, rhizomelic and asymmetric limb shortening, severe scoliosis, a sectorial cataract, and no family history of CDPX2. Whole exome sequencing (WES) revealed a p.Arg63del mutation in EBP, and biochemical studies confirmed a diagnosis of CDPX2. Short stature in combination with ichthyosis or alopecia, cataracts, and limb shortening in an adult should prompt consideration of a diagnosis of CDPX2. As in many genetic syndromes, the hallmark features of CDPX2 in pediatric patients are not readily identifiable in adults. This demonstrates the utility of WES as a diagnostic tool in the evaluation of adults with genetic disorders.
Project description:Conradi-Hünermann-Happle syndrome (CDPX2, OMIM 302960) is an inherited X-linked dominant variant of chondrodysplasia punctata which primarily affects the skin, bones, and eyes. CDPX2 patients display skin defects, including ichthyotic lesions, follicular atrophoderma, cicatricial alopecia, and less frequently ichthyosiform erythroderma, cataracts, and skeletal abnormalities consisting of short stature, asymmetric shortening of the limbs, epiphyseal stippling, and craniofacial defects. CDPX2 results from mutations in emopamil binding protein (EBP) gene. The aim of our study is to identify EBP mutation in a unique case of Conradi-Hünermann-Happle syndrome with rare psoriasiform lesions.
Project description:X-linked dominant chondrodysplasia punctata (CDPX2 or Conradi-Hünermann-Happle syndrome, MIM #302960) is caused by mutations in the EBP gene. Affected female patients present with Blaschkolinear ichthyosis, coarse hair or alopecia, short stature, and normal psychomotor development. The disease is usually lethal in boys. Nevertheless, few male patients have been reported; they carry a somatic mosaicism in EBP or present with Klinefelter syndrome. Here, we report CDPX2 patients belonging to a three-generation family, carrying the splice variant c.301 + 5 G > C in intron 2 of EBP. The grandfather carries the variant as mosaic state and presents with short stature and mild ichthyosis. The mother also presents with short stature and mild ichthyosis and the female fetus with severe limb and vertebrae abnormalities and no skin lesions, with random X inactivation in both. This further characterizes the phenotypical spectrum of CDPX2, as well as intrafamilial variability, and raises the question of differential EBP mRNA splicing between the different target tissues.
Project description:Conradi-Hünermann-Happle syndrome is a rare X-linked dominant syndrome affecting the skin, skeletal system, and eyes. Here, we report on a female patient with a de novo heterozygous missense mutation c.301C>T (p.Trp101Arg) of the EMP (emopamil binding protein) gene.
Project description:The Conradi-Hünermann Disease is a rare syndrome, which affects the cranial development and the anatomy of dental occlusion. After interdisciplinary treatment completion, the patient reached satisfactory facial anatomy, as well as regular occlusal relationship, attested 2 years of accompaniment.
Project description:A 32-month-old girl with patent ductus arteriosus, false tendon of left ventricle, mild pulmonary hypertension, and chronic cardiac insufficiency (cardiac function level I-II) was misdiagnosed with Marfan Syndrome and there was no improvement in her physical growth after operation for this disease. The preterm baby was finally diagnosed with Myhre Syndrome by clinical phenotypes and mutation of SMAD4 gene.
Project description:Autoimmune lymphoproliferative syndrome (ALPS) is a rare inherited disorder of apoptosis, most commonly due to mutations in the FAS (TNFRSF6) gene. It presents with chronic lymphadenopathy, splenomegaly, and symptomatic multilineage cytopenias in an otherwise healthy child. Unfortunately, these clinical findings are also noted in other childhood lymphoproliferative conditions, such as leukemia, lymphoma, and hemophagocytic lymphohistiocytosis, which can confound the diagnosis. This report describes a 6-year-old girl with symptoms misdiagnosed as hemophagocytic lymphohistiocytosis and treated with chemotherapy before the recognition that her symptoms and laboratory values were consistent with a somatic FAS mutation leading to ALPS. This case should alert pediatricians to include ALPS in the differential diagnosis of a child with lymphadenopathy, splenomegaly, and cytopenias; obtain discriminating screening laboratory biomarkers, such as serum vitamin B-12 and ferritin levels; and, in the setting of a highly suspicious clinical scenario for ALPS, pursue testing for somatic FAS mutations when germ-line mutation testing is negative.
Project description:A 7-yr-old patient was referred to pediatric orthopedic clinic of Imam hospital (2016) with the diagnosis of cerebral palsy (CP). His parents were concerned about some inconsistency of his disease progression. After initial evaluations, the diagnosis of CP was incorrect. The true diagnosis was suspected and confirmed with molecular genetic analysis. A rare autosomal recessive disorder -Cockayne syndrome- was diagnosed. Although untreatable, it can be prevented by appropriate prenatal diagnostic tests for their future children.
Project description:Bowen-Conradi syndrome (BCS) is an autosomal-recessive disorder characterized by severely impaired prenatal and postnatal growth, profound psychomotor retardation, and death in early childhood. Nearly all reported BCS cases have been among Hutterites, with an estimated birth prevalence of 1/355. We previously localized the BCS gene to a 1.9 Mbp interval on human chromosome 12p13.3. The 59 genes in this interval were ranked as candidates for BCS, and 35 of these, including all of the best candidates, were sequenced. We identified variant NM_006331.6:c.400A-->G, p.D86G in the 18S ribosome assembly protein EMG1 as the probable cause of BCS. This mutation segregated with disease, was not found in 414 non-Hutterite alleles, and altered a highly conserved aspartic acid (D) residue. A structural model of human EMG1 suggested that the D86 residue formed a salt bridge with arginine 84 that would be disrupted by the glycine (G) substitution. EMG1 mRNA was detected in all human adult and fetal tissues tested. In BCS patient fibroblasts, EMG1 mRNA levels did not differ from those of normal cells, but EMG1 protein was dramatically reduced in comparison to that of normal controls. In mammalian cells, overexpression of EMG1 harboring the D86G mutation decreased the level of soluble EMG1 protein, and in yeast two-hybrid analysis, the D86G substitution increased interaction between EMG1 subunits. These findings suggested that the D-to-G mutation caused aggregation of EMG1, thereby reducing the level of the protein and causing BCS.