Project description:BackgroundBuruli ulcer is a necrotising infection of skin and soft tissue caused by Mycobacterium ulcerans (M. ulcerans). Buruli ulcer most often occurs on limbs, and it is hypothesized this is explained by direct exposure to the environment. However, even on exposed areas Buruli ulcer is not randomly distributed. M. ulcerans prefers an in vitro temperature of 30-33°C and growth is inhibited at higher temperatures. This study investigated whether variations in skin surface temperature distribution in healthy volunteers could partly account for Buruli ulcer lesion distribution.Methodology/principal findingsIn this observational study, a thermal camera (FLIR E8) was used to measure skin surface temperature at the sternal notch and at 44 predetermined locations on the limbs of 18 human participants. Body locations of high, middle and low Buruli ulcer incidence were identified from existing density maps of lesion distribution. Skin temperature of the three incidence location groups were compared, and differences in age and sex groups were also analysed. We found an inverse relationship between skin temperature and lesion distribution, where high incidence locations were significantly cooler and low incidence locations significantly warmer (Kruskal-Wallis test p<0.0001). Linear mixed effects regression analysis estimated that skin surface temperature accounts for 22.0% of the variance in Buruli ulcer lesion distribution (marginal R-squared = 0.219) in the anterior location group, and 0.6% in the posterior group (marginal R-squared 0.006). Men had warmer upper and lower limbs than females (Mann-Whitney U test p = 0.0003 and p<0.0001 respectively).Conclusions/significanceWe have found an inverse relationship between skin temperature and Buruli ulcer lesion distribution, however this association is weak. Additional unknown factors are likely to be involved that explain the majority of the variation in Buruli lesion distribution.
Project description:Human activities have been implicated in the observed increase in Global Mean Surface Temperature. Over regional scales where climatic changes determine societal impacts and drive adaptation related decisions, detection and attribution (D&A) of climate change can be challenging due to the greater contribution of internal variability, greater uncertainty in regionally important forcings, greater errors in climate models, and larger observational uncertainty in many regions of the world. We examine the causes of annual and seasonal surface air temperature (TAS) changes over sub-regions (based on a demarcation of homogeneous temperature zones) of India using two observational datasets together with results from a multimodel archive of forced and unforced simulations. Our D&A analysis examines sensitivity of the results to a variety of optimal fingerprint methods and temporal-averaging choices. We can robustly attribute TAS changes over India between 1956-2005 to anthropogenic forcing mostly by greenhouse gases and partially offset by other anthropogenic forcings including aerosols and land use land cover change.
Project description:BackgroundHuman obesity is associated with increased heat production; however, subcutaneous adipose tissue provides an insulating layer that impedes heat loss. To maintain normothermia, therefore, obese individuals must increase their heat dissipation.ObjectiveThe objective was to test the hypothesis that temperature in a heat-dissipating region of the hand is elevated in obese adults.DesignObese [body mass index (in kg/m(2)) > or = 30] and normal-weight (NW; body mass index = 18-25) adults were studied under thermoneutral conditions at rest. Core body temperature was measured by using ingested telemetric capsules. The temperatures of the third fingernail bed of the right hand and of abdominal skin from an area 1.5 cm inferior to the umbilicus were determined by using infrared thermography. Abdominal skin temperatures were also measured via adhesive thermistors that were placed over a prominent skin-surface blood vessel and over an adjacent nonvessel location. The groups were compared by analysis of covariance with age, sex, race, and room temperature as covariates.ResultsCore temperature did not differ significantly between the 23 obese and 13 NW participants (P = 0.74). However, infrared thermography-measured fingernail-bed temperature was significantly higher in obese subjects than in NW subjects (33.9 +/- 0.7 degrees C compared with 28.6 +/- 0.9 degrees C; P < 0.001). Conversely, infrared thermography-measured abdominal skin temperature was significantly lower in obese subjects than in NW subjects (31.8 +/- 0.2 degrees C compared with 32.8 +/- 0.3 degrees C; P = 0.02). Nonvessel abdominal skin temperatures measured by thermistors were also lower in obese subjects (P = 0.04).ConclusionsGreater subcutaneous abdominal adipose tissue in obese adults may provide a significant insulating layer that blunts abdominal heat transfer. Augmented heat release from the hands may offset heat retention in areas of the body with greater adiposity, thereby helping to maintain normothermia in obesity. This trial was registered at clinicaltrials.gov as NCT00266500.
Project description:Skin surface lipids (SSLs) arising from both sebaceous glands and skin removal form a complex lipid mixture composed of free fatty acids and neutral lipids. High-temperature gas chromatography coupled with electron impact or chemical ionization mass spectrometry was used to achieve a simple analytical protocol, without prior separation in classes and without prior cleavage of lipid molecules, in order to obtain simultaneously i) a qualitative characterization of the individual SSLs and ii) a quantitative evaluation of lipid classes. The method was first optimized with SSLs collected from the forehead of a volunteer. More than 200 compounds were identified in the same run. These compounds have been classified in five lipid classes: free fatty acids, hydrocarbons, waxes, sterols, and glycerides. The advantage to this method was it provided structural information on intact compounds, which is new for cholesteryl esters and glycerides, and to obtain detailed fingerprints of the major SSLs. These fingerprints were used to compare the SSL compositions from different body areas. The squalene/cholesterol ratio was used to determine the balance between sebaceous secretion and skin removal. This method could be of general interest in fields where complex lipid mixtures are involved.
Project description:A major question in human genetics is how sequence variants of broadly expressed genes produce tissue- and cell type-specific molecular phenotypes. Genetic variation of alternative splicing is a prevalent source of transcriptomic and proteomic diversity in human populations. We investigated splicing quantitative trait loci (sQTLs) in 1,209 samples from 13 human brain regions, using RNA sequencing (RNA-seq) and genotype data from the Genotype-Tissue Expression (GTEx) project. Hundreds of sQTLs were identified in each brain region. Some sQTLs were shared across brain regions, whereas others displayed regional specificity. These "regionally ubiquitous" and "regionally specific" sQTLs showed distinct positional distributions of single-nucleotide polymorphisms (SNPs) within and outside essential splice sites, respectively, suggesting their regulation by distinct molecular mechanisms. Integrating the binding motifs and expression patterns of RNA binding proteins with exon splicing profiles, we uncovered likely causal variants underlying brain region-specific sQTLs. Notably, SNP rs17651213 created a putative binding site for the splicing factor RBFOX2 and was associated with increased splicing of MAPT exon 3 in cerebellar tissues, where RBFOX2 was highly expressed. Overall, our study reveals a more comprehensive spectrum and regional variation of sQTLs in human brain and demonstrates that such regional variation can be used to fine map potential causal variants of sQTLs and their associated neurological diseases.
Project description:In the skin, aging is associated with overall epidermal thinning, decreased barrier function, and gradual deterioration of the epidermal immune response. However, the presence and role of cytokines, chemokines, and biologic analytes (CCBAs) in immunosenescence are not known. Here we identified age-related changes in skin properties and CCBAs from stratum corneum of healthy human subjects, providing a means to utilize CCBAs as benchmarks for aging skin health. Transepidermal water loss and a(*) (skin redness) decreased in an age-dependent manner, and were significantly lower (p < 0.05) in Groups 2 (56.6 ± 4.6 years) and 3 (72.9 ± 3.0 years) vs. Group 1 (24.3 ± 2.8 years). In skin wash fluid, 48 CCBAs were detected; seven were significantly lower (p < 0.05) in Groups 2 and 3: EGF, FGF-2, IFN?2, IL-1RA, HSA, keratin-6, and involucrin; cortisol was significantly higher (p < 0.05) in Groups 2 and 3. Our results correspond with the pro-inflammatory shift that occurs with immunosenescence and also provides basis for understanding the inflammatory changes in normal aging skin.
Project description:Observations show that Arctic-average surface temperature increased from 1900 to 1940, decreased from 1940 to 1970, and increased from 1970 to present. Here, using new observational data and improved climate models employing observed natural and anthropogenic forcings, we demonstrate that contributions from greenhouse gas and aerosol emissions, along with explosive volcanic eruptions, explain most of this observed variation in Arctic surface temperature since 1900. In addition, climate model simulations without natural and anthropogenic forcings indicate very low probabilities that the observed trends in each of these periods were due to internal climate variability alone. Arctic climate change has important environmental and economic impacts and these results improve our understanding of past Arctic climate change and our confidence in future projections.
Project description:Changes over the scale of decades in oceanic environments present a range of challenges for management and utilisation of ocean resources. Here we investigate sources of global temporal variation in Sea Surface Temperature (SST) and Ocean Colour (Chl-a) and their co-variation, over a 14 year period using statistical methodologies that partition sources of variation into inter-annual and annual components and explicitly account for daily auto-correlation. The variation in SST shows bands of increasing variability with increasing latitude, while the analysis of annual variability in Chl-a shows mostly mid-latitude high variability bands. Covariation patterns of SST and Chl-a suggests several different mechanisms impacting Chl-a change and variance. Our high spatial resolution analysis indicates these are likely to be operating at relatively small spatial scales. There are large regions showing warming and rising of Chl-a, contrasting with regions that show warming and decreasing Chl-a. The covariation pattern in annual variation in SST and Chl-a reveals broad latitudinal bands. On smaller scales there are significant regional anomalies where upwellings are known to occur. Over decadal time scales both trend and variation in SST, Chl-a and their covariance is highly spatially heterogeneous, indicating that monitoring and resource management must be regionally appropriate.
Project description:BackgroundSkin temperature asymmetry (SkTA) may assist in early identification of complex regional pain syndrome (CRPS), but previous work has been limited by methodological shortcomings including failure to account for the cutaneous nerve distribution where temperature is measured and reliance on laboratory equipment not clinically available. Pilot work suggested that a cold pressor test (CPT) provided a consistent thermoregulatory stress and might increase sensitivity/specificity of SkTA measurements generated reliably by handheld infrared (IR) thermometers.AimsThis study investigated the sensitivity, specificity, and validity of SkTA in the upper limb to identify CRPS.MethodsThis study was part of a larger clinical trial (the SARA study: www.clinicaltrials.gov NCT02070367). Using IR thermometers, we evaluated SkTA over major peripheral nerve distributions in the hands before and after immersing a single foot in 5°C water for 30 s. Participant groups included healthy volunteers, CRPS, known nerve injury, and hand fracture.ResultsSkTA was measured in 65 persons, including 17 persons with CRPS (meeting Budapest criteria). Analysis of variance for n = 378 SkTA observations supported diagnosis, CPT, and nerve distribution as significant predictors (P < 0.001) explaining 94% of the variance. Post CPT, sensitivity for a >1.5°C SkTA improved to 82.4% from 58.8%, whereas specificity dropped from 56.3% to 43.8%.ConclusionThis study adds further support for the accuracy of SkTA as a diagnostic indicator of CRPS. Further precision in estimates will be gained from larger studies, which should also seek to replicate our findings for SkTA in the lower limbs.
Project description:The human skin is an organ with a surface area of 1.5-2 m(2) that provides our interface with the environment. The molecular composition of this organ is derived from host cells, microbiota, and external molecules. The chemical makeup of the skin surface is largely undefined. Here we advance the technologies needed to explore the topographical distribution of skin molecules, using 3D mapping of mass spectrometry data and microbial 16S rRNA amplicon sequences. Our 3D maps reveal that the molecular composition of skin has diverse distributions and that the composition is defined not only by skin cells and microbes but also by our daily routines, including the application of hygiene products. The technological development of these maps lays a foundation for studying the spatial relationships of human skin with hygiene, the microbiota, and environment, with potential for developing predictive models of skin phenotypes tailored to individual health.