Ontology highlight
ABSTRACT: Background
Malaria transmission depends on infected mosquitoes and can be controlled by transmission-blocking drugs. The recently discovered FREP1-mediated malaria transmission pathway is an excellent target to screen drugs for limiting transmission.Methods
To identify candidate small molecules, we used an ELISA-based approach to analyze extracts from a fungal library for inhibition of the FREP1-parasite interaction. We isolated and determined one active compound by chromatography and crystallography, respectively. We measured the effects of the bioactive compound on malaria transmission to mosquitoes through standard membrane-feeding assays (SMFA) and on parasite proliferation in blood by culturing.Results
We discovered the ethyl acetate extract of the fungus Purpureocillium lilacinum that inhibited Plasmodium falciparum transmission to mosquitoes. Pre-exposure to the extract rendered Anopheles gambiae resistant to Plasmodium infection. Furthermore, we isolated one novel active compound from the extract and identified it as 3-amino-7,9-dihydroxy-1-methyl-6H-benzo[c]chromen-6-one, or "pulixin." Pulixin prevented FREP1 from binding to P. falciparum-infected cell lysate. Pulixin blocked the transmission of the parasite to mosquitoes with an EC50 (the concentration that gave half-maximal response) of 11 µM based on SMFA. Notably, pulixin also inhibited the proliferation of asexual-stage P. falciparum with an EC50 of 47 nM. The compound did not show cytotoxic effects at a concentration of 116 µM or lower.Conclusion
By targeting the FREP1-Plasmodium interaction, we discovered that Purpureocillium lilacinum extract blocked malaria transmission. We isolated and identified the bioactive agent pulixin as a new compound capable of stopping malaria transmission to mosquitoes and inhibiting parasite proliferation in blood culture.
SUBMITTER: Niu G
PROVIDER: S-EPMC7992847 | biostudies-literature |
REPOSITORIES: biostudies-literature