Project description:Electrochemical processes coupling carbon dioxide reduction reactions with organic oxidation reactions are promising techniques for producing clean chemicals and utilizing renewable energy. However, assessments of the economics of the coupling technology remain questionable due to diverse product combinations and significant process design variability. Here, we report a technoeconomic analysis of electrochemical carbon dioxide reduction reaction-organic oxidation reaction coproduction via conceptual process design and thereby propose potential economic combinations. We first develop a fully automated process synthesis framework to guide process simulations, which are then employed to predict the levelized costs of chemicals. We then identify the global sensitivity of current density, Faraday efficiency, and overpotential across 295 electrochemical coproduction processes to both understand and predict the levelized costs of chemicals at various technology levels. The analysis highlights the promise that coupling the carbon dioxide reduction reaction with the value-added organic oxidation reaction can secure significant economic feasibility.
Project description:Development of reversible and stable catalysts for the electrochemical reduction of CO2 is of great interest. Here, we elucidate the atomistic details of how a palladium electrocatalyst inhibits CO poisoning during both formic acid oxidation to carbon dioxide and carbon dioxide reduction to formic acid. We compare results obtained with a platinum single-crystal electrode modified with and without a single monolayer of palladium. We combine (high-scan-rate) cyclic voltammetry with density functional theory to explain the absence of CO poisoning on the palladium-modified electrode. We show how the high formate coverage on the palladium-modified electrode protects the surface from poisoning during formic acid oxidation, and how the adsorption of CO precursor dictates the delayed poisoning during CO2 reduction. The nature of the hydrogen adsorbed on the palladium-modified electrode is considerably different from platinum, supporting a model to explain the reversibility of this reaction. Our results help in designing catalysts for which CO poisoning needs to be avoided.
Project description:The covalent insertion of a cobalt heme into the cavity of an artificial protein named alpha Rep (αRep) leads to an artificial cobalt hemoprotein that is active as a catalyst not only for the photo-induced production of H2, but also for the reduction of CO2 in a neutral aqueous solution. This new artificial metalloenzyme has been purified and characterized by Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS), circular dichroism, and UltraViolet-Visible spectroscopy. Using theoretical experiments, the structure of this biohybrid and the positioning of the residues near the metal complex were examined, which made it possible to complete the coordination of the cobalt ion by an axial glutamine Gln283 ligand. While the Co(III)-porphyrin catalyst alone showed weak catalytic activity for both reactions, 10 times more H2 and four times more CO2 were produced when the Co(III)-porphyrin complex was buried in the hydrophobic cavity of the protein. This study thus provides a solid basis for further improvement of these biohybrids using well-designed modifications of the second and outer coordination sphere by site-directed mutagenesis of the host protein.
Project description:Gross primary production (GPP) is a fundamental ecosystem process that sequesters carbon dioxide (CO2) and forms the resource base for higher trophic levels. Still, the relative contribution of different controls on GPP at the whole-ecosystem scale is far from resolved. Here we show, by manipulating CO2 concentrations in large-scale experimental pond ecosystems, that CO2 availability is a key driver of whole-ecosystem GPP. This result suggests we need to reformulate past conceptual models describing controls of lake ecosystem productivity and include our findings when developing models used to predict future lake ecosystem responses to environmental change.
Project description:We developed an effective method for reductive radical formation that utilizes the radical anion of carbon dioxide (CO2•-) as a powerful single electron reductant. Through a polarity matched hydrogen atom transfer (HAT) between an electrophilic radical and a formate salt, CO2•- formation occurs as a key element in a new radical chain reaction. Here, radical chain initiation can be performed through photochemical or thermal means, and we illustrate the ability of this approach to accomplish reductive activation of a range of substrate classes. Specifically, we employed this strategy in the intermolecular hydroarylation of unactivated alkenes with (hetero)aryl chlorides/bromides, radical deamination of arylammonium salts, aliphatic ketyl radical formation, and sulfonamide cleavage. We show that the reactivity of CO2•- with electron-poor olefins results in either single electron reduction or alkene hydrocarboxylation, where substrate reduction potentials can be utilized to predict reaction outcome.
Project description:The reduction of carbon dioxide (CO2) is of interest to the chemical industry, as many synthetic materials can be derived from CO2. To help determine the reagents needed for the functionalization of carbon dioxide this experimental and computational study describes the reduction of CO2 to formate and CO with hydride, electron, and proton sources in the presence of sterically bulky Lewis acids and bases. The insertion of carbon dioxide into a main group hydride, generating a main group formate, was computed to be more thermodynamically favorable for more hydridic (reducing) main group hydrides. A ten kcal/mol increase in hydricity (more reducing) of a main group hydride resulted in a 35% increase in the main group hydride's ability to insert CO2 into the main group hydride bond. The resulting main group formate exhibited a hydricity (reducing ability) about 10% less than the respective main group hydride prior to CO2 insertion. Coordination of a second identical Lewis acid to a main group formate complex further reduced the hydricity by about another 20%. The addition of electrons to the CO adduct of t Bu3P and B(C6F5)3 resulted in converting the sequestered CO2 molecule to CO. Reduction of the CO2 adduct of t Bu3P and B(C6F5)3 with both electrons and protons resulted in only proton reduction.
Project description:Electrochemical carbon dioxide reduction to fuels presents one of the great challenges in chemistry. Herein we present an understanding of trends in electrocatalytic activity for carbon dioxide reduction over different metal catalysts that rationalize a number of experimental observations including the selectivity with respect to the competing hydrogen evolution reaction. We also identify two design criteria for more active catalysts. The understanding is based on density functional theory calculations of activation energies for electrochemical carbon monoxide reduction as a basis for an electrochemical kinetic model of the process. We develop scaling relations relating transition state energies to the carbon monoxide adsorption energy and determine the optimal value of this descriptor to be very close to that of copper.
Project description:Amine-containing solids have been investigated as promising adsorbents for CO2 capture, but the low oxidative stability of amines has been the biggest hurdle for their practical applications. Here, we developed an extra-stable adsorbent by combining two strategies. First, poly(ethyleneimine) (PEI) was functionalized with 1,2-epoxybutane, which generates tethered 2-hydroxybutyl groups. Second, chelators were pre-supported onto a silica support to poison p.p.m.-level metal impurities (Fe and Cu) that catalyse amine oxidation. The combination of these strategies led to remarkable synergy, and the resultant adsorbent showed a minor loss of CO2 working capacity (8.5%) even after 30 days aging in O2-containing flue gas at 110 °C. This corresponds to a ~50 times slower deactivation rate than a conventional PEI/silica, which shows a complete loss of CO2 uptake capacity after the same treatment. The unprecedentedly high oxidative stability may represent an important breakthrough for the commercial implementation of these adsorbents.
Project description:The morphology of electrode materials is often overlooked when comparing different carbon-based electrocatalysts for carbon dioxide reduction. To investigate the role of morphological attributes, we studied polymer-derived, interconnected, N-doped carbon structures with uniformly sized meso or macropores, differing only in the pore size. We found that the carbon dioxide reduction selectivity (versus the hydrogen evolution reaction) increased around three times just by introducing the porosity into the carbon structure (with an optimal pore size of 27 nm). We attribute this change to alterations in the wetting and CO2 adsorption properties of the carbon catalysts. These insights offer a new platform to advance CO2 reduction performance by only morphological engineering of the electrocatalyst.
Project description:Efficient electroreduction of carbon dioxide (CO2) to ethanol is of great importance, but remains a challenge because it involves the transfer of multiple proton-electron pairs and carbon-carbon coupling. Herein, we report a CoO-anchored N-doped carbon material composed of mesoporous carbon (MC) and carbon nanotubes (CNT) as a catalyst for CO2 electroreduction. The faradaic efficiencies of ethanol and current density reached 60.1% and 5.1 mA cm-2, respectively. Moreover, the selectivity for ethanol products was extremely high among the products produced from CO2. A proposed mechanism is discussed in which the MC-CNT/Co catalyst provides a relay catalytic platform, where CoO catalyzes the formation of CO* intermediates which spill over to MC-CNT for carbon-carbon coupling to form ethanol. The high selectivity for ethanol is attributed mainly to the highly selective carbon-carbon coupling active sites on MC-CNT.