Curcumin-Loaded Pickering Emulsion Formed by Ultrasound and Stabilized by Metal Organic Framework Optimization.
Ontology highlight
ABSTRACT: The ultrasound-assisted preparation of a curcumin-loaded metal organic framework (MOF) UiO-66-NH2 stabilized Pickering emulsion system was carried out in this study. A 3-level-4-factor Box-Behnken design (BBD) and response surface methodology (RSM) analysis were employed to systematically evaluate the effect of different experimental parameters (i.e., ultrasonic power, ultrasonic time, oil content, and MOF content) on curcumin loading capacity (LC) and encapsulation efficiency (EE). The results indicated that ultrasonic power and MOF content significantly affected LC and EE, whereas ultrasonic time and oil content had little effect. A mathematical model for optimizing the preparation of emulsion systems was established. Based on the ridge max analysis, an optimal condition for the newly developed curcumin-loaded MOF-Pickering emulsion was identified, i.e., ultrasonic power 150 W, ultrasonic time 11.17 min, oil content 20.0%, and MOF content 1.10%. At this condition, the LC and EE of curcumin obtained from the experiment reached 7.33% ± 0.54% and 56.18% ± 3.03%, respectively, which were within the prediction range of LC (7.35% ± 0.29%) and EE (54.34% ± 2.45%). The emulsion systems created in this study may find new applications for the delivery of bioactive compounds in food and pharmaceutical areas.
SUBMITTER: Ma P
PROVIDER: S-EPMC7998958 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA