Ontology highlight
ABSTRACT: Simple Summary
Transforming growth factor (TGF) β signaling is intimately involved in nearly all aspects of tumor development and is known for its role as both a tumor suppressor in benign tissues and a tumor promoter in advanced cancers. This dual role is also reflected by cancer cell-produced TGFβ that eventually acts on the same cell(s) in an autocrine fashion. Recently, we observed that endogenous TGFB1 can inhibit rather than stimulate cell motility in cell lines with high autocrine TGFβ production. The unexpected anti-migratory role prompted us to evaluate how autocrine TGFβ1 impacts the cells’ migratory and proliferative responses to exogenous (recombinant human) TGFβ. Surprisingly, endogenous TGFB1 opposed the migratory and growth-inhibitory responses induced by exogenous TGFβ1 by driving a self-perpetuating feedforward loop involving MEK-ERK signaling. Our observation has implications for the use of TGFβ signaling inhibitors in cancer therapy. Abstract
Autocrine transforming growth factor β (aTGFβ) has been implicated in the regulation of cell invasion and growth of several malignant cancers such as pancreatic ductal adenocarcinoma (PDAC) or triple-negative breast cancer (TNBC). Recently, we observed that endogenous TGFB1 can inhibit rather than stimulate cell motility in cell lines with high aTGFβ production and mutant KRAS, i.e., Panc1 (PDAC) and MDA-MB-231 (TNBC). The unexpected anti-migratory role prompted us to evaluate if aTGFβ1 may be able to antagonize the action of exogenous (recombinant human) TGFβ (rhTGFβ), a well-known promoter of cell motility and growth arrest in these cells. Surprisingly, RNA interference-mediated knockdown of the endogenous TGFB1 sensitized genes involved in EMT and cell motility (i.e., SNAI1) to up-regulation by rhTGFβ1, which was associated with a more pronounced migratory response following rhTGFβ1 treatment. Ectopic expression of TGFB1 decreased both basal and rhTGFβ1-induced migratory activities in MDA-MB-231 cells but had the opposite effect in Panc1 cells. Moreover, silencing TGFB1 reduced basal proliferation and enhanced growth inhibition by rhTGFβ1 and induction of cyclin-dependent kinase inhibitor, p21WAF1. Finally, we show that aTGFβ1 promotes MEK-ERK signaling and vice versa to form a self-perpetuating feedforward loop that is sensitive to SB431542, an inhibitor of the TGFβ type I receptor, ALK5. Together, these data suggest that in transformed cells an ALK5-MEK-ERK-aTGFβ1 pathway opposes the promigratory and growth-arresting function of rhTGFβ1. This observation has profound translational implications for TGFβ signaling in cancer.
SUBMITTER: Ungefroren H
PROVIDER: S-EPMC8002526 | biostudies-literature |
REPOSITORIES: biostudies-literature