Project description:Extracellular vesicles (EVs) are secreted by healthy and tumor cells and are involved in cell-cell communication. Tumor-released EVs could represent a new class of biomarkers from liquid biopsies. The aim of this study was to identify tumor-specific EV markers in clear cell renal carcinoma (ccRCC) using cell lines and patient-derived tissue samples. EVs from ccRCC cell lines (786-O, RCC53, Caki1, and Caki2) and patient tissues were isolated via ultracentrifugation. EVs were characterized using transmission electron microscopy, nanoparticle tracking analysis, and Western blotting using exosome and putative tumor markers (epithelial cell adhesion molecule (EpCAM), carbonic anhydrase 9 (CA9), CD70, CD147). The tumor markers were verified using immunohistochemistry. CA9 was expressed in Caki2 cells and EVs, and CD147 was found in the cells and EVs of all tested ccRCC cell lines. In tumor tissues, we found an increased expression of CA9, CD70, and CD147 were increased in cell lysates and EV fractions compared to normal tissues. In contrast, EpCAM was heterogeneously expressed in tumor samples and positive in normal tissue. To conclude, we developed an effective technique to isolate EVs directly from human tissue samples with high purity and high concentration. In contrast to EpCAM, CA9, CD70, and CD147 could represent promising markers to identify tumor-specific EVs in ccRCC.
Project description:Background and aimsAlcoholic hepatitis (AH) is diagnosed by clinical criteria, although several objective scores facilitate risk stratification. Extracellular vesicles (EVs) have emerged as biomarkers for many diseases and are also implicated in the pathogenesis of AH. Therefore, we investigated whether plasma EV concentration and sphingolipid cargo could serve as diagnostic biomarkers for AH and inform prognosis to permit dynamic risk profiling of AH subjects.Approach and resultsEVs were isolated and quantified from plasma samples from healthy controls, heavy drinkers, and subjects with end-stage liver disease (ESLD) attributed to cholestatic liver diseases and nonalcoholic steatohepatitis, decompensated alcohol-associated cirrhosis (AC), and AH. Sphingolipids were quantified by tandem mass spectroscopy. The median plasma EV concentration was significantly higher in AH subjects (5.38 × 1011 /mL) compared to healthy controls (4.38 × 1010 /mL; P < 0.0001), heavy drinkers (1.28 × 1011 /mL; P < 0.0001), ESLD (5.35 × 1010 /mL; P < 0.0001), and decompensated AC (9.2 × 1010 /mL; P < 0.0001) disease controls. Among AH subjects, EV concentration correlated with Model for End-Stage Liver Disease score. When EV counts were dichotomized at the median, survival probability for AH subjects at 90 days was 63.0% in the high-EV group and 90.0% in the low-EV group (log-rank P value = 0.015). Interestingly, EV sphingolipid cargo was significantly enriched in AH when compared to healthy controls, heavy drinkers, ESLD, and decompensated AC (P = 0.0001). Multiple sphingolipids demonstrated good diagnostic and prognostic performance as biomarkers for AH.ConclusionsCirculating EV concentration and sphingolipid cargo signature can be used in the diagnosis and differentiation of AH from heavy drinkers, decompensated AC, and other etiologies of ESLD and predict 90-day survival permitting dynamic risk profiling.
Project description:Background: Renal cell carcinoma (RCC) accounts for about 2% of all cancers. Renal biopsy is the gold standard among the diagnostic tools, but it is invasive and not suitable for all patients. Therefore, new reliable and non-invasive biomarkers for ccRCC detection are required. Secretion of extracellular vesicles (EVs), containing RNA molecules that can be transferred between cells, seems to be a general characteristic of malignant transformation. Consistently, cancer-derived EVs are enriched in the blood, urine and various malignant effusions of cancer patients. Therefore, urinary samples can be a non-invasive approach for discovering diagnostic biomarkers. Methods: We enrolled 33 clear-cell RCC (ccRCC) patients and 22 healthy subjects (HS), age and sex-matched, for urine collection and extracellular vesicles isolation by differential centrifugation. Transcriptional profiles of urinary EVs from 12 patients with ccRCC and 11 HS were generated using the Illumina HumanHT-12 v4 BeadChip oligonucleotide arrays. Microarray analysis led to the identification of RNA that were then validated using RT-qPCR. Results: We showed for the first time that urinary exosomal shuttle RNA (esRNA) was significantly different in ccRCC patients compared to HS and we identified three EVs esRNA involved in the tumor biology that are potentially suitable as non-invasive biomarkers. GSTA1, CEBPA and PCBD1 RNA levels decreased in urinary EVs of patients compared to HS. After 1 month post-operation, the levels of RNA increased to reach the normal level. Conclusions: This study suggests, for the first time, the potential use of the RNA content of urinary EVs to provide a non-invasive first step to diagnose the ccRCC. Total RNA obtained from urinary extracellular vesicles isolated from ccRCC patients and healthy subjects.
Project description:BackgroundThere are no proven tumor biomarkers for the early diagnosis of clear cell renal cell carcinoma (ccRCC) thus far. This study aimed to identify novel biomarkers of ccRCC based on exosomal mRNA (emRNA) profiling and develop emRNA-based signatures for the early detection of ccRCC.MethodsFour hundred eighty-eight participants, including 226 localized ccRCCs, 73 patients with benign renal masses, and 189 healthy controls, were recruited. Circulating emRNA sequencing was performed in 12 ccRCCs and 22 healthy controls in the discovery phase. The candidate emRNAs were evaluated with 108 ccRCCs and 70 healthy controls in the test and training phases. The emRNA-based signatures were developed by logistic regression analysis and validated with additional cohorts of 106 ccRCCs, 97 healthy controls, and 73 benign individuals.ResultsFive emRNAs, CUL9, KMT2D, PBRM1, PREX2, and SETD2, were identified as novel potential biomarkers of ccRCC. We further developed an early diagnostic signature that comprised KMT2D and PREX2 and a differential diagnostic signature that comprised CUL9, KMT2D, and PREX2 for RCC detection. The early diagnostic signature displayed high accuracy in distinguishing ccRCCs from healthy controls, with areas under the receiver operating characteristic curve (AUCs) of 0.836 and 0.830 in the training and validation cohorts, respectively. The differential diagnostic signature also showed great performance in distinguishing ccRCCs from benign renal masses (AUC = 0.816), including solid masses (AUC = 0.810) and cystic masses (AUC = 0.832).ConclusionsWe established and validated novel emRNA-based signatures for the early detection of ccRCC and differential diagnosis of uncertain renal masses. These signatures could be promising and noninvasive biomarkers for ccRCC detection and thus improve the prognosis of ccRCC patients.
Project description:Renal cell carcinoma (RCC) accounts for more than 2% of neoplasias in humans worldwide. Renal biopsy is the gold standard among the diagnostic procedures, but it is invasive and not suitable for all patients. Therefore, new reliable and non-invasive biomarkers for RCC are required. Secretion of extracellular vesicles (EVs), containing RNA molecules that can be transferred between cells, appears to be a common feature of neoplasia. Consistently, cancer-derived EVs are increased in blood and urine. Therefore, urinary samples may be a non-invasive approach for discovering new diagnostic biomarkers. We enrolled 46 patients of whom 33 with clear cell renal cell carcinoma (ccRCC) and 22 healthy subjects (HS). Urinary EVs were isolated by differential centrifugation. Microarray analysis led to the identification of RNA molecules that were validated using RT-qPCR. We found that urinary exosomal shuttle RNA (esRNA) pattern was significantly different in ccRCC patients compared to HS and to non-clear cell RCC (non-ccRCC) and we identified three esRNAs involved in the tumor biology that may be potentially suitable as non-invasive gene signature. GSTA1, CEBPA and PCBD1 esRNA levels were decreased in urine of patients compared with HS. This pattern was specific of the ccRCC and one month after partial or radical nephrectomy the esRNA levels increased to reach the normal level. This study suggests, for the first time, the potential use of the RNA content of urinary EVs to provide a non-invasive first step to diagnose the ccRCC.
Project description:BackgroundThe accumulation of α-synuclein (α-syn), an essential step in PD development and progression, is observed not only in neurons but also in glia, including astrocytes. The mechanisms regulating astrocytic α-syn level and aggregation remain unclear. More recently, it has been demonstrated that a part of α-syn spreading occurs through extracellular vesicles (EVs), although it is unknown whether this process is involved in astrocytes of PD. It is known, however, that EVs derived from the central nervous system exist in the blood and are extensively explored as biomarkers for PD and other neurodegenerative disorders.MethodsPrimary astrocytes were transfected with A53T α-syn plasmid or exposed to α-syn aggregates. The level of astrocyte-derived EVs (AEVs) was assessed by nanoparticle tracking analysis and immunofluorescence. The lysosomal function was evaluated by Cathepsin assays, immunofluorescence for levels of Lamp1 and Lamp2, and LysoTracker Red staining. The Apogee assays were optimized to measure the GLT-1+ AEVs in clinical cohorts of 106 PD, 47 multiple system atrophy (MSA), and 103 healthy control (HC) to test the potential of plasma AEVs as a biomarker to differentiate PD from other forms of parkinsonism.ResultsThe number of AEVs significantly increased in primary astrocytes with α-syn deposition. The mechanism of increased AEVs was partially attributed to lysosomal dysfunction. The number of α-syn-carrying AEVs was significantly higher in patients with PD than in HC and MSA. The integrative model combining AEVs with total and aggregated α-syn exhibited efficient diagnostic power in differentiating PD from HC with an AUC of 0.915, and from MSA with an AUC of 0.877.ConclusionsPathological α-syn deposition could increase the astrocytic secretion of EVs, possibly through α-syn-induced lysosomal dysfunction. The α-syn-containing AEVs in the peripheral blood may be an effective biomarker for clinical diagnosis or differential diagnosis of PD.
Project description:Background: Renal cell carcinoma (RCC) accounts for about 2% of all cancers. Renal biopsy is the gold standard among the diagnostic tools, but it is invasive and not suitable for all patients. Therefore, new reliable and non-invasive biomarkers for ccRCC detection are required. Secretion of extracellular vesicles (EVs), containing RNA molecules that can be transferred between cells, seems to be a general characteristic of malignant transformation. Consistently, cancer-derived EVs are enriched in the blood, urine and various malignant effusions of cancer patients. Therefore, urinary samples can be a non-invasive approach for discovering diagnostic biomarkers. Methods: We enrolled 33 clear-cell RCC (ccRCC) patients and 22 healthy subjects (HS), age and sex-matched, for urine collection and extracellular vesicles isolation by differential centrifugation. Transcriptional profiles of urinary EVs from 12 patients with ccRCC and 11 HS were generated using the Illumina HumanHT-12 v4 BeadChip oligonucleotide arrays. Microarray analysis led to the identification of RNA that were then validated using RT-qPCR. Results: We showed for the first time that urinary exosomal shuttle RNA (esRNA) was significantly different in ccRCC patients compared to HS and we identified three EVs esRNA involved in the tumor biology that are potentially suitable as non-invasive biomarkers. GSTA1, CEBPA and PCBD1 RNA levels decreased in urinary EVs of patients compared to HS. After 1 month post-operation, the levels of RNA increased to reach the normal level. Conclusions: This study suggests, for the first time, the potential use of the RNA content of urinary EVs to provide a non-invasive first step to diagnose the ccRCC.
Project description:Autophagy can protect cells and organisms from stressors such as nutrient deprivation, and is involved in many pathological processes including human cancer. Therefore, it is necessary to investigate the role of autophagy-related genes (ARGs) in cancer. In this study, we investigated the gene expression of 222 ARGs in 1048 Kidney Renal Clear Cell Carcinoma (KIRC) cases, from 5 independent cohorts. The gene expression of ARGs were first evaluated in the The Cancer Genome Atlas (TCGA) by Recevier Operating Characteristic (ROC) analysis to select potential biomarkers with extremely high ability in KIRC detection (AUC?0.85 and p<0.0001). Then in silico procedure progressively leads to the selection of two genes in a three rounds of validation performed in four human KIRC-patients datasets including two independent Gene Expression Omnibus (GEO) datasets, Oncomine dataset and Human Protein Atlas dataset. Finally, only P4HB (Prolyl 4-hydroxylase, beta polypeptide) gene was experimentally validated by RT-PCR between control kidney cells and cancer cells. Following univariate and multivariate analyses of TCGA-KIRC clinical data showed that P4HB expression is an independent prognostic indicator of unfavorable overall survival (OS) for KIRC patients. Based on these findings, we proposed that P4HB might be one potential novel KIRC diagnostic and prognostic biomarker at both mRNA and protein levels.
Project description:The ever-increasing morbidity and mortality of clear cell renal cell carcinoma (ccRCC) urgently demands updated biomarkers. MicroRNAs (miRNAs) are involved in diverse biological processes such as cell proliferation, differentiation, apoptosis by regulating their target genes' expression. In kidney cancers, miRNAs have been reported to be involved in tumorigenesis and to be the diagnostic, prognostic, and therapeutic response biomarkers. Here, we performed a systematic analysis for ccRCC-related miRNAs as biomarkers by searching keywords in the NCBI PubMed database and found 118 miRNAs as diagnostic biomarkers, 28 miRNAs as prognostic biomarkers, and 80 miRNAs as therapeutic biomarkers in ccRCC. miRNA-21, miRNA-155, miRNA-141, miRNA-126, and miRNA-221, as significantly differentially expressed miRNAs between cancer and normal tissues, play extensive roles in the cell proliferation, differentiation, apoptosis of ccRCC. GO and KEGG enrichment analysis of these miRNAs' target genes through Metascape showed these target genes are enriched in Protein Domain Specific Binding (GO:0019904). In this paper, we identified highly specific miRNAs in the pathogenesis of ccRCC and explored their potential applications for diagnosis, prognosis, and treatment of ccRCC.
Project description:Clear cell renal cell carcinoma (ccRCC) is the most common histological type of renal carcinoma and has a high recurrence rate and poor outcome. Accurate patient risk stratification based on genetic markers can help to identify the high-risk patient for early and further treatments and would promote patient survival. Long non-coding RNAs (lncRNAs) have attracted widespread attention as biomarkers for early diagnosis, treatment, and prognosis because of their high specificity and sensitivity. Here, we performed a systematic search in NCBI PubMed and found 44 lncRNAs as oncogenes, 18 lncRNAs as tumor suppressors, 199 lncRNAs as diagnostic biomarkers, 62 lncRNAs as prognostic biomarkers, and 3 lncRNAs as predictive biomarkers for ccRCC. We also comprehensively discuss the biological functions and molecular regulatory mechanisms of lncRNAs in ccRCC. Overall, the present study is a systemic analysis to assess the expression and clinical value of lncRNAs in ccRCC, and lncRNAs hold promise to be diagnostic, prognostic, and predictive biomarkers.