Genetic Diversity and Pathogenicity of Rhizoctonia spp. Isolates Associated with Red Cabbage in Samsun (Turkey).
Ontology highlight
ABSTRACT: A total of 132 Rhizoctonia isolates were recovered from red cabbage plants with root rot and wirestem symptoms in the province of Samsun (Turkey) between 2018 and 2019. Based on the sequence analysis of the internal transcribed spacer (ITS) region located between the 18S and 28S ribosomal RNA genes and including nuclear staining, these 124 isolates were assigned to multinucleate Rhizoctonia solani, and eight were binucleate Rhizoctonia. The most prevalent anastomosis group (AG) was AG 4 (84%), which was subdivided into AG 4 HG-I (81%) and AG 4 HG-III (3%), followed by AG 5 (10%) and AG-A (6%), respectively. The unweighted pair group method phylogenetic tree resulting from the data of 68 isolates with the inter-PBS amplification DNA profiling method based on interspersed retrotransposon element sequences confirmed the differentiation of AGs with a higher resolution. In the greenhouse experiment with representative isolates (n = 24) from AGs on red cabbage (cv. Rondale), the disease severity index was between 3.33 and 4.0 for multinucleate AG isolates and ranged from 2.5 to 3.17 for AG-A isolates. In the pathogenicity assay of six red cabbage cultivars, one isolate for each AG was tested using a similar method, and all cultivars were susceptible to AG 4 HG-I and AG 4 HG-III isolates. Redriver and Remale were moderately susceptible, while Rescue, Travero, Integro, and Rondale were susceptible to the AG 5 isolate. The results indicate that the most prevalent and aggressive AGs of Rhizoctonia are devastating pathogens to red cabbage, which means that rotation with nonhost-crops for these AGs may be the most effective control strategy. This is the first comprehensive study of Rhizoctonia isolates in red cabbage using a molecular approach to assess genetic diversity using iPBS-amplified DNA profiling.
Project description:The presence of Citrus tristeza virus (CTV) in Turkey has been known since the 1960s and the virus was detected in all citrus growing regions of the country. Even though serological and biological characteristics of CTV have been studied since the 1980s, molecular characteristics of CTV isolates have not been studied to date in Turkey. In this study, molecular characteristics of 15 CTV isolates collected from different citrus growing regions of Turkey were determined by amplification, cloning, and sequencing of their major coat protein (CP) genes. The sequence analysis showed that the CP genes were highly conserved among Turkish isolates. However, isolates from different regions showed more genetic variation than isolates from the same region. Turkish isolates were clustered into three phylogenetic groups showing no association with geographical origins, host, or symptoms induced in indicator plants. Phylogenetic analysis of Turkish isolates with isolates from different citrus growing regions of the world including well-characterized type isolates of previously established strain specific groups revealed that some Turkish isolates were closely related to severe quick decline or stem pitting isolates. The results demonstrated that although CTV isolates from Turkey are considered biologically mild, majority of them contain severe components potentially causing quick decline or stem pitting.
Project description:Pleurotus is considered an important genus that belongs to the family Pleurotaceae and includes the edible King Oyster mushroom (Pleurotus eryngii). In the present study, 19 Pleurotus isolates were collected from two locations in the north of Jordan (Tell ar-Rumman and Um-Qais). The morphological characteristics among collected isolates revealed that there was a morphological similarity among the collected isolates. Nucleotide sequence analysis of the internal transcribed spacer (ITS1?5.8S rDNA?ITS4 region) and 28S nuclear large subunit (nLSU) in the ribosomal DNA gene of the isolated stains showed that all of them share over 98% sequence similarity with P. eryngii. Genetic diversity among the collected strains was assessed using inter simple sequence repeat (ISSR) analysis using 18 different primer pairs. Using this approach, 141 out of 196 bands obtained were considered polymorphic and the highest percentage of polymorphism was observed using primer UBC827 (92.3%) with an overall Polymorphism Information Content (PIC) value of 70.56%. Cluster analysis showed that the Jordanian Pleurotus isolates fall into two main clades with a coefficient of similarity values ranging from 0.59 to 0.74 with a clear clustering based on collection sites. The results of the present study reveal that molecular techniques of ISSR and rDNA sequencing can greatly aid in classification and identification of Pleurotus spp. in Jordan.
Project description:Strawberry (Fragaria×ananassa) is one of the most important berry crops in the world. Root rot of strawberry caused by Rhizoctonia spp. is a serious threat to commercial strawberry production worldwide. However, there is no information on the genetic diversity and phylogenetic status of Rhizoctonia spp. associated with root rot of strawberry in Australia. To address this, a total of 96 Rhizoctonia spp. isolates recovered from diseased strawberry plants in Western Australia were characterized for their nuclear condition, virulence, genetic diversity and phylogenetic status. All the isolates were found to be binucleate Rhizoctonia (BNR). Sixty-five of the 96 BNR isolates were pathogenic on strawberry, but with wide variation in virulence, with 25 isolates having high virulence. Sequence analysis of the internal transcribed spacers of the ribosomal DNA separated the 65 pathogenic BNR isolates into six distinct clades. The sequence analysis also separated reference BNR isolates from strawberry or other crops across the world into clades that correspond to their respective anastomosis group (AG). Some of the pathogenic BNR isolates from this study were embedded in the clades for AG-A, AG-K and AG-I, while other isolates formed clades that were sister to the clades specific for AG-G, AG-B, AG-I and AG-C. There was no significant association between genetic diversity and virulence of these BNR isolates. This study demonstrates that pathogenic BNR isolates associated with root rot of strawberry in Western Australia have wide genetic diversity, and highlights new genetic groups not previously found to be associated with root rot of strawberry in the world (e.g., AG-B) or in Australia (e.g., AG-G). The wide variation in virulence and genetic diversity identified in this study will be of high value for strawberry breeding programs in selecting, developing and deploying new cultivars with resistance to these multi-genetic groups of BNR.
Project description:BackgroundBartonella spp. are vector-borne pathogens that cause zoonotic infections in humans. One of the most well-known of these is cat-scratch disease caused by Bartonella henselae and Bartonella clarridgeiae, with cats being the major reservoir for these two bacteria. Izmir, Turkey is home to many stray cats, but their potential role as a reservoir for the transmission of Bartonella to humans has not been investigated yet. Therefore, the aim of this study was to investigate the prevalence of Bartonella species and their genetic diversity in stray cats living in Izmir.MethodsMolecular prevalence of Bartonella spp. in stray cats (n = 1012) was investigated using a PCR method targeting the 16S-23S internal transcribed spacer gene (ITS), species identification was performed by sequencing and genetic diversity was evaluated by haplotype analysis.ResultsAnalysis of the DNA extracted from 1012 blood samples collected from stray cats revealed that 122 samples were Bartonella-positive, which is a molecular prevalence of 12.05% (122/1012; 95% confidence interval [CI] 10.1-14.2%). Among the Bartonella-positive specimens, 100 (100/122; 81.96%) were successfully sequenced, and B. henselae (45/100; 45%), B. clarridgeiae (29/100; 29%) and Bartonella koehlerae (26/100; 26%) were identified by BLAST and phylogenetic analyses. High genetic diversity was detected in B. clarridgeiae with 19 haplotypes, followed by B. henselae (14 haplotypes) and B. koehlerae (8 haplotypes).ConclusionsThis comprehensive study analyzing a large number of samples collected from stray cats showed that Bartonella species are an important source of infection to humans living in Izmir. In addition, high genetic diversity was detected within each Bartonella species.
Project description:Animal and human fascioliasis is a health and economic problem in few of tropical and subtropical areas of the world, including Iran. The present study aimed to determine the genotype diversity of Fasciola isolates in different hosts from Gilan province, northern Iran, and compare it with those isolates from southwestern Iran. Forty-eight adult Fasciola spp. were collected from cattle, sheep, and goats from slaughterhouse in Talesh, north of Iran. DNA was extracted from each fluke and PCR-RFLP was used to find out the species of the isolates. The ribosomal ITS1 and ITS2, and mitochondrial genes of NDI and COI from individual Fasciola isolates of each host were PCR-amplified and the PCR products were sequenced. Genetic variation within and between the isolates was evaluated by comparing the sequences of ribosomal and mitochondrial genes. For analysis of phylogenetic diversity of the flukes, phylogenetic trees were constructed, using ITS1, ITS2, NDI, and COI sequences of the isolates. Based on PCR-RFLP profile, 5 (22.7%) of the total of sheep isolates and 18 (90%) of cattle isolates were identified as F. gigantica and other remaining samples from sheep, cattle and goats were identified as F. hepatica. Based on ITS1 and ITS2 sequences, six and seven nucleotide polymorphism were respectively noted in the isolates. On the other hand, CO1 region sequences showed considerable variation, which laid Talesh (north) isolates in a separate cluster. Findings of the study showed that the sequences of CO1 isolates from north and southwest have substantial differences mainly in CO1 region.
Project description:The Sandhills of Nebraska is a complex ecosystem, covering 50,000 km2 in central and western Nebraska and predominantly of virgin grassland. Grasslands are the most widespread vegetation in the U.S. and once dominated regions are currently cultivated croplands, so it stands to reason that some of the current plant pathogens of cultivated crops originated from grasslands, particularly soilborne plant pathogens. The anamorphic genus Rhizoctonia includes genetically diverse organisms that are known to be necrotrophic fungal pathogens, saprophytes, mycorrhiza of orchids, and biocontrol agents. This study aimed to evaluate the diversity of Rhizoctonia spp. on four native grasses in the Sandhills of Nebraska and determine pathogenicity to native grasses and soybean. In 2016 and 2017, a total of 84 samples were collected from 11 sites in the Sandhills, located in eight counties of Nebraska. The samples included soil and symptomatic roots from the four dominant native grasses: sand bluestem, little bluestem, prairie sandreed, and needle-and-thread. Obtained were 17 Rhizoctonia-like isolates identified, including five isolates of binucleate Rhizoctonia AG-F; two isolates each from binucleate Rhizoctonia AG-B, AG-C, and AG-K, Rhizoctonia solani AGs: AG-3, and AG-4; one isolate of binucleate Rhizoctonia AG-L, and one isolate of R. zeae. Disease severity was assessed for representative isolates of each AG in a greenhouse assay using sand bluestem, needle-and-thread, and soybean; prairie sandreed and little bluestem were unable to germinate under artificial conditions. On native grasses, all but two isolates were either mildly aggressive (causing 5-21% disease severity) or aggressive (21-35% disease severity). Among those, three isolates were cross-pathogenic on soybean, with R. solani AG-4 shown to be highly aggressive (86% disease severity). Thus, it is presumed that Rhizoctonia spp. are native to the sandhills grasslands and an emerging pathogen of crops cultivated may have survived in the soil and originate from grasslands.
Project description:Sweet cherry is an important fruit crop with increasing economical value in Turkey and the world. A number of viruses cause diseases and economical losses in sweet cherry. Prune dwarf virus (PDV), is one of the most common viruses of stone fruits including sweet cherry in the world. In this study, PDV was detected from 316 of 521 sweet cherry samples collected from 142 orchards in 10 districts of Isparta province of Turkey by double antibody sandwich-enzyme linked immunosorbent assay (DAS-ELISA). The presence of PDV in ELISA positive samples was confirmed in 37 isolates by reverse transcription- polymerase chain reaction (RT-PCR) method. A genomic region of 862 bp containing the coat protein (CP) gene of PDV was re-amplified from 21 selected isolates by RT-PCR. Amplified DNA fragments of these isolates were purified and sequenced for molecular characterization and determining genetic diversity of PDV. Sequence comparisons showed 84-99% to 81-100% sequence identity at nucleotide and amino acid level, respectively, of the CP genes of PDV isolates from Isparta and other parts of the world. Phylogenetic analyses of the CP genes of PDV isolates from different geographical origins and diverse hosts revealed that PDV isolates formed different phylogenetic groups. While isolates were not grouped solely based on their geographical origins or hosts, some association between phylogenetic groups and geographical origins or hosts were observed.
Project description:The phylogenetic relationships of ninety-five rose rosette virus (RRV) isolates with full-length genomic sequences were analyzed. These isolates were recovered mostly from commercial roses that are vegetatively propagated rather than grown from seed. First, the genome segments were concatenated, and the maximum likelihood (ML) tree shows that the branches arrange independent of their geographic origination. There were six major groups of isolates, with 54 isolates in group 6 and distributed in two subgroups. An analysis of nucleotide diversity across the concatenated isolates showed lower genetic differences among RNAs encoding the core proteins required for encapsidation than the latter genome segments. Recombination breakpoints were identified near the junctions of several genome segments, suggesting that the genetic exchange of segments contributes to differences among isolates. The ML analysis of individual RNA segments revealed different relationship patterns among isolates, which supports the notion of genome reassortment. We tracked the branch positions of two newly sequenced isolates to highlight how genome segments relate to segments of other isolates. RNA6 has an interesting pattern of single-nucleotide mutations that appear to influence amino acid changes in the protein products derived from ORF6a and ORF6b. The P6a proteins were typically 61 residues, although three isolates encoded P6a proteins truncated to 29 residues, and four proteins extended 76-94 residues. Homologous P5 and P7 proteins appear to be evolving independently. These results suggest greater diversity among RRV isolates than previously recognized.
Project description:Rhizoctonia solani is a necrotrophic plant pathogen with a wide host range. R. solani is a species complex consisting of thirteen anastomosis groups (AGs) defined by compatibility of hyphal fusion reaction and subgroups based on cultural morphology. The relationship between such classifications and host specificity remains elusive. Here, we investigated the pathogenicity of seventeen R. solani isolates (AG-1 to 7) in Japan towards Arabidopsis thaliana using leaf and soil inoculations. The tested AGs, except AG-3 and AG-6, induced symptoms in both methods with variations in pathogenicity. The virulence levels differed even within the same AG and subgroup. Some isolates showed tissue-specific infection behavior. Thus, the AGs and their subgroups are suggested to be not enough to define the virulence (host and tissue specificity) of R. solani. We also evaluated the virulence of the isolates on Arabidopsis plants pretreated with salicylic acid, jasmonic acid, and ethylene. No obvious effects were detected on the symptom formation by the virulence isolates, but ethylene and salicylic acid slightly enhanced the susceptibility to the weak and nonvirulent isolates. R. solani seems to be able to overcome the induced defense by these phytohormones in the infection to Arabidopsis.
Project description:BackgroundAeromonas spp. are gram-negative bacteria that can cause a variety of infections in both humans and animals and play a controversial role in diarrhea outbreaks. Our aim was to identify clinical and environmental Aeromonas isolates associated with a cholera outbreak in a northeast county of Brazil at the species level. We also aimed to determine the genetic structure of the bacterial population and the virulence potential of the Aeromonas isolates.Methods and resultsAnalysis based on concatenated sequences of the 16S rRNA and gyrB genes suggested the classification of the 119 isolates studied into the following species: A. caviae (66.9%), A. veronii (15.3%), A. aquariorum (9.3%), A. trota (3.4%), A. hydrophila (3.4%) and A. jandaei (1.7%). One isolate did not fit any Aeromonas species assessed, which might indicate a new species. The haplotype network based on 16S rRNA gene sequences identified 59 groups among the 119 isolates and 26 reference strains, and it clustered almost all A. caviae isolates into the same group. The analysis of the frequency patterns of seven virulence-associated genes (alt, ast, hlyA, aerA, exu, lip, flaA/B) revealed 29 virulence patterns composed of one to seven genes. All the isolates harbored at least one gene, and three of them harbored all seven virulence genes.ConclusionThe results emphasize the need to improve local water supply and maintain close monitoring of possible bacterial contamination in the drinking water.