Project description:Lightweight and flexible energy storage devices are urgently needed to persistently power wearable devices, and lithium-sulfur batteries are promising technologies due to their low mass densities and high theoretical capacities. Here we report a flexible and high-energy lithium-sulfur full battery device with only 100% oversized lithium, enabled by rationally designed copper-coated and nickel-coated carbon fabrics as excellent hosts for lithium and sulfur, respectively. These metallic carbon fabrics endow mechanical flexibility, reduce local current density of the electrodes, and, more importantly, significantly stabilize the electrode materials to reach remarkable Coulombic efficiency of >99.89% for a lithium anode and >99.82% for a sulfur cathode over 400 half-cell charge-discharge cycles. Consequently, the assembled lithium-sulfur full battery provides high areal capacity (3?mA?h cm-2), high cell energy density (288?W?h?kg-1 and 360?W?h?L-1), excellent cycling stability (260 cycles), and remarkable bending stability at a small radius of curvature (<1?mm).
Project description:Lithium-ion batteries are crucial to the future of energy storage. However, the energy density of current lithium-ion batteries is insufficient for future applications. Sulfur cathodes and silicon anodes have garnered a lot of attention in the field due their high capacity potential. Although recent developments in sulfur and silicon electrodes show exciting results in half cell formats, neither electrode can act as a lithium source when put together into a full cell format. Current methods toward incorporating lithium in sulfur-silicon full cells involves prelithiating silicon or using lithium sulfide. These methods however, complicate material processing and creates safety hazards. Herein, we present a novel full cell battery architecture that bypasses the issues associated with current methods. This battery architecture gradually integrates controlled amounts of pure lithium into the system by allowing lithium the access to external circuit. A high specific energy density of 350 Wh/kg after 250 cycles at C/10 was achieved using this method. This work should pave the way for future researches into sulfur-silicon full cells.
Project description:Lithium-sulfur batteries can displace lithium-ion by delivering higher specific energy. Presently, however, the superior energy performance fades rapidly when the sulfur electrode is loaded to the required levels-5 to 10 mg cm-2- due to substantial volume change of lithiation/delithiation and the resultant stresses. Inspired by the classical approaches in particle agglomeration theories, we found an approach that places minimum amounts of a high-modulus binder between neighboring particles, leaving increased space for material expansion and ion diffusion. These expansion-tolerant electrodes with loadings up to 15 mg cm-2 yield high gravimetric (>1200 mA·hour g-1) and areal (19 mA·hour cm-2) capacities. The cells are stable for more than 200 cycles, unprecedented in such thick cathodes, with Coulombic efficiency above 99%.
Project description:Lithium-sulfur batteries (Li-S batteries) have attracted intense interest because of their high specific capacity and low cost, although they are still hindered by severe capacity loss upon cycling caused by the soluble lithium polysulfide intermediates. Although many structure innovations at the material and device levels have been explored for the ultimate goal of realizing long cycle life of Li-S batteries, it remains a major challenge to achieve stable cycling while avoiding energy and power density compromises caused by the introduction of significant dead weight/volume and increased electrochemical resistance. Here we introduce an ultrathin composite film consisting of naphthalimide-functionalized poly(amidoamine) dendrimers and graphene oxide nanosheets as a cycling stabilizer. Combining the dendrimer structure that can confine polysulfide intermediates chemically and physically together with the graphene oxide that renders the film robust and thin (<1% of the thickness of the active sulfur layer), the composite film is designed to enable stable cycling of sulfur cathodes without compromising the energy and power densities. Our sulfur electrodes coated with the composite film exhibit very good cycling stability, together with high sulfur content, large areal capacity, and improved power rate.
Project description:Deteriorating interfacial contact under mechanical deformation induces large cracks and high charge transfer resistance, resulting in a severe capacity fading of flexible lithium-ion batteries (LIBs). Herein, an oxygen plasma treatment on a polymer separator combined with high-speed centrifugal spraying to construct ultrastable interfacial contacts is reported. With the treatment, abundant hydrophilic oxygen-containing functional groups are produced and ensure strong chemical adhesion between the separator and the active materials. With single walled carbon nanotubes (SWCNTs) sprayed onto the active materials, a dense thin film is formed as the current collector. Meanwhile, the centrifugal force caused by high-speed rotation together with van der Waals forces under fast evaporation produces a much closer interface between the current collector and the active materials. As a result of this ultrastable interfacial interaction, the integrated electrode shows no structural failure after 5000 bending cycles with the charge-transfer resistance as low as 35.8% and a Li-ion diffusion coefficient nearly 19 times of the untreated electrode. Flexible LIBs assembled with these integrated electrodes show excellent structural and electrochemical stability, and can work steadily under various deformed states and repeated bending. This work provides a new technique toward rational design of electrode configuration for flexible LIBs.
Project description:Lithium (Li) metal anodes have garnered increasing interest in recent years as its high theoretical capacity and low electrochemical potential promises a myriad of opportunities for various applications. However, one critical issue to overcome is the inhomogeneous deposition of Li+ during the plating and stripping process. This inhomogeneous deposition could result in uncontrollable dendrite growth, further leading to poor coulombic efficiency, shorter lifecycles, and safety concerns due to internal short circuit and thermal runaways. To address these issues, a 3D porous core-shell fiber scaffold is presented, comprising of well-dispersed SiO2, TiO2, and carbon, as superlithiophilic host materials for lithium anodes. The amorphous SiO2 and TiO2 allow for controllable nucleation and deposition of metal Li inside the porous core-shell fiber even at ultrahigh current densities of 10 mA cm-2. In addition, the interconnected conductive fiber with high porosity enables good electrical conductivity with fast ion transport and excellent mechanical strength to withstand massive Li loading during repeated cycles of stripping and plating. As a result, excellent cycling performance and high rate capability are observed in both symmetric cells and full cells, highlighting the feasibility of the proposed Li anode composite.
Project description:Lithium-sulfur batteries are promising technology in electrical vehicles and large-scale energy storage systems. However, their market penetration is seriously impeded by great challenges such as the low electrical conduction of sulfur and lithium sulfides, and lithium polysulfides' shuttling effect. This work shows that such challenges can be partly resolved by encapsulating sulfur in crumpled reduced graphene oxide (S@crGO), which was synthesized by a facile and scalable one-step in situ method. The strong interaction between sulfur and the graphene host, micro- and meso-pore structures, and rich surface functional groups contribute to the high performance of the S@crGO cathode for lithium-sulfur batteries.
Project description:Lithium metal is a promising anode candidate for the next-generation rechargeable battery due to its highest specific capacity (3860 mA h g-1) and lowest potential, but low Coulombic efficiency and formation of lithium dendrites hinder its practical application. Here, we report a self-formed flexible hybrid solid-electrolyte interphase layer through co-deposition of organosulfides/organopolysulfides and inorganic lithium salts using sulfur-containing polymers as an additive in the electrolyte. The organosulfides/organopolysulfides serve as "plasticizer" in the solid-electrolyte interphase layer to improve its mechanical flexibility and toughness. The as-formed robust solid-electrolyte interphase layers enable dendrite-free lithium deposition and significantly improve Coulombic efficiency (99% over 400 cycles at a current density of 2 mA cm-2). A lithium-sulfur battery based on this strategy exhibits long cycling life (1000 cycles) and good capacity retention. This study reveals an avenue to effectively fabricate stable solid-electrolyte interphase layer for solving the issues associated with lithium metal anodes.The practical application of lithium metal anodes suffers from the poor Coulombic efficiency and growth of lithium dendrites. Here, the authors report an approach to enable the self-formation of stable and flexible solid-electrolyte interphase layers which serve to address both issues.
Project description:A novel soluble copolymer poly(S-MVT) was synthesized using a relatively quick one-pot solvent-free method, inverse vulcanization. Both of the two raw materials are sustainable, i.e., elemental sulfur is a by-product of the petroleum industry and 4-Methyl-5-vinylthiazole (MVT) is a natural monoene compound. The microstructure of poly(S-MVT) was characterized by FT-IR, 1H NMR, XPS spectroscopy, XRD, DSC SEM, and TEM. Test results indicated that the copolymers possess protonated thiazole nitrogen atoms, meso/macroporous structure, and solubility in tetrahydrofuran and chloroform. Moreover, the improved electronic properties of poly(S-MVT) relative to elemental sulfur have also been investigated by density functional theory (DFT) calculations. The copolymers are utilized successfully as the cathode active material in Li-S batteries. Upon employment, the copolymer with 15% MVT content provided good cycling stability at a capacity of ∼514 mA h g-1 (based on the mass of copolymer) and high Coulombic efficiencies (∼100%) over 100 cycles, as well as great rate performance.
Project description:Composite materials with a stable network structure consisting of natural sepiolite (Sep) powders, carbon nanotubes (CNTs) and conductive polymer (PANI) have been successfully synthesized using a simple vacuum heat treatment and chemical oxidation method, and they have been used as cathode materials for lithium sulfur batteries. It is found that Sep/CNT/S@PANI composites possess high initial discharge capacity, good cyclic stability and good rate performance. The initial discharge capacity of the Sep/CNT/S@PANI-II composite is about 1100 mA h g-1 at 2C, and remained at 650 mA h g-1 after 300 cycles, and the corresponding coulombic efficiency is above 93%. Such performance is attributed to specific porous structure, outstanding adsorption characteristics, and excellent ion exchange capability of sepiolite, as well as excellent conductivity of CNT. Furthermore, the PANI coating has a pinning effect for sulfur, which enhances the utilization of the active mass and improves the cycling stability and the coulombic efficiency of the composites at high current rates.