Project description:Patients with coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) demonstrate high rates of co-infection with respiratory viruses, including influenza A (IAV), suggesting pathogenic interactions. We investigated how IAV may increase the risk of COVID-19 lung disease, focusing on the receptor angiotensin-converting enzyme (ACE)2 and the protease TMPRSS2, which cooperate in the intracellular uptake of SARS-CoV-2. We found, using single-cell RNA sequencing of distal human nondiseased lung homogenates, that at baseline, ACE2 is minimally expressed in basal, goblet, ciliated and secretory epithelial cells populating small airways. We focused on human small airway epithelial cells (SAECs), central to the pathogenesis of lung injury following viral infections. Primary SAECs from nondiseased donor lungs apically infected (at the air-liquid interface) with IAV (up to 3×105 pfu; ∼1 multiplicity of infection) markedly (eight-fold) boosted the expression of ACE2, paralleling that of STAT1, a transcription factor activated by viruses. IAV increased the apparent electrophoretic mobility of intracellular ACE2 and generated an ACE2 fragment (90 kDa) in apical secretions, suggesting cleavage of this receptor. In addition, IAV increased the expression of two proteases known to cleave ACE2, sheddase ADAM17 (TACE) and TMPRSS2 and increased the TMPRSS2 zymogen and its mature fragments, implicating proteolytic autoactivation. These results indicate that IAV amplifies the expression of molecules necessary for SARS-CoV-2 infection of the distal lung. Furthermore, post-translational changes in ACE2 by IAV may increase vulnerability to lung injury such as acute respiratory distress syndrome during viral co-infections. These findings support efforts in the prevention and treatment of influenza infections during the COVID-19 pandemic.
Project description:BACKGROUND:Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has dramatically changed our world, country, communities, and families. There is controversy regarding risk factors for severe COVID-19 disease. It has been suggested that asthma and allergy are not highly represented as comorbid conditions associated with COVID-19. OBJECTIVE:Our aim was to extend our work in IL-13 biology to determine whether airway epithelial cell expression of 2 key mediators critical for SARS-CoV-2 infection, namely, angiotensin-converting enzyme 2 (ACE2) and transmembrane protease, serine 2 (TMPRSS2), are modulated by IL-13. METHODS:We determined effects of IL-13 treatment on ACE2 and TMPRSS2 expression ex vivo in primary airway epithelial cells from participants with and without type 2 asthma obtained by bronchoscopy. We also examined expression of ACE2 and TMPRSS2 in 2 data sets containing gene expression data from nasal and airway epithelial cells from children and adults with asthma and allergic rhinitis. RESULTS:IL-13 significantly reduced ACE2 and increased TMPRSS2 expression ex vivo in airway epithelial cells. In 2 independent data sets, ACE2 expression was significantly reduced and TMPRSS2 expression was significantly increased in the nasal and airway epithelial cells in type 2 asthma and allergic rhinitis. ACE2 expression was significantly negatively associated with type 2 cytokines, whereas TMPRSS2 expression was significantly positively associated with type 2 cytokines. CONCLUSION:IL-13 modulates ACE2 and TMPRSS2 expression in airway epithelial cells in asthma and atopy. This deserves further study with regard to any effects that asthma and atopy may render in the setting of COVID-19 infection.
Project description:A large body of evidence shows the harmful effects of cigarette smoke to oral and systemic health. More recently, a link between smoking and susceptibility to coronavirus disease 2019 (COVID-19) was proposed. COVID-19 is due to infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which uses the receptor ACE2 and the protease TMPRSS2 for entry into host cells, thereby infecting cells of the respiratory tract and the oral cavity. Here, we examined the effects of cigarette smoke on the expression of SARS-CoV-2 receptors and infection in human gingival epithelial cells (GECs). We found that cigarette smoke condensates (CSC) upregulated ACE2 and TMPRSS2 expression in GECs, and that CSC activated aryl hydrocarbon receptor (AhR) signaling in the oral cells. ACE2 was known to mediate SARS-CoV-2 internalization, and we demonstrate that CSC treatment potentiated the internalization of SARS-CoV-2 pseudovirus in GECs in an AhR-dependent manner. AhR depletion using small interference RNA decreased SARS-CoV-2 pseudovirus internalization in CSC-treated GECs compared with control GECs. Our study reveals that cigarette smoke upregulates SARS-CoV-2 receptor expression and infection in oral cells. Understanding the mechanisms involved in SARS-CoV-2 infection in cells of the oral cavity may suggest therapeutic interventions for preventing viral infection and transmission.
Project description:Background and objectiveCOVID-19 is complicated by acute lung injury, and death in some individuals. It is caused by SARS-CoV-2 that requires the ACE2 receptor and serine proteases to enter AEC. We determined what factors are associated with ACE2 expression particularly in patients with asthma and COPD.MethodsWe obtained lower AEC from 145 people from two independent cohorts, aged 2-89 years, Newcastle (n = 115) and Perth (n = 30), Australia. The Newcastle cohort was enriched with people with asthma (n = 37) and COPD (n = 38). Gene expression for ACE2 and other genes potentially associated with SARS-CoV-2 cell entry was assessed by qPCR, and protein expression was confirmed with immunohistochemistry on endobronchial biopsies and cultured AEC.ResultsIncreased gene expression of ACE2 was associated with older age (P = 0.03) and male sex (P = 0.03), but not with pack-years smoked. When we compared gene expression between adults with asthma, COPD and healthy controls, mean ACE2 expression was lower in asthma patients (P = 0.01). Gene expression of furin, a protease that facilitates viral endocytosis, was also lower in patients with asthma (P = 0.02), while ADAM-17, a disintegrin that cleaves ACE2 from the surface, was increased (P = 0.02). ACE2 protein expression was also reduced in endobronchial biopsies from asthma patients.ConclusionIncreased ACE2 expression occurs in older people and males. Asthma patients have reduced expression. Altered ACE2 expression in the lower airway may be an important factor in virus tropism and may in part explain susceptibility factors and why asthma patients are not over-represented in those with COVID-19 complications.
Project description:Impaired interferon (IFN) production has been observed in various obstructive respiratory diseases. This contributes to enhanced sensitivity towards viral infections triggering acute exacerbations. To compensate for this impaired host IFN response, there is need to explore new therapeutic strategies, like exogenous administration of IFNs as prophylactic treatment. In the present study, we examined the protective potential of IFN-?1 and compared it with the previously established protecting effect of IFN-?. A549 cells and human primary bronchial epithelial cells were first treated with either IFN-? (500 IU/ml) or IFN-?1 (500 ng/ml) for 18 h. For infection, two approaches were adopted: i) Continuous scenario: after pre-treatment, cells were infected immediately for 24 h with human rhinovirus 1B (HRV1B) in IFN-containing medium, or were cultured for another 72 h in IFN-containing medium, and then infected for 24 h with HRV1B, ii) Pre-treatment scenario: IFN-containing medium was replaced after 18 h and cells were infected for 4 h either immediately after pre-treatment or after additional culturing for 72 h in IFN-free medium. The protective effect was evaluated in terms of reduction in the number of viral copies/infectious progeny, and enhanced expression of IFN-stimulated genes (ISGs). In both cell types and in both approaches, IFN-?1 and IFN-? treatment resulted in pronounced and long-lasting antiviral effects exemplified by significantly reduced viral copy numbers and diminished infectious progeny. This was associated with strong up-regulation of multiple ISGs. However, in contrast to the IFN-? induced expression of ISGs, which decreased over time, expression of ISGs induced by IFN-?1 was sustained or even increased over time. Here we demonstrate that the protective potential of IFN-?1 is comparable to IFN-?. Yet, the long-lasting induction of ISGs by IFN-?1 and most likely less incitement of side effects due to more localized expression of its receptors could make it an even more promising candidate for prophylactic treatment than IFN-?.
Project description:SARS-CoV-2, the virus that has caused the COVID-19 pandemic, robustly activates the host immune system in critically ill patients. Understanding how the virus engages the immune system will facilitate the development of needed therapeutic strategies. In this study, we demonstrate both in vitro and in vivo that the SARS-CoV-2 surface proteins spike (S) and envelope (E) activate the key immune signaling IFN pathway in both human and mouse immune and epithelial cells independent of viral infection and replication. These proteins induce reactive oxidative species generation and increases in human- and murine-specific, IFN-responsive cytokines and chemokines, similar to their upregulation in critically ill COVID-19 patients. Induction of IFN signaling is dependent on canonical but discrepant inflammatory signaling mediators, as the activation induced by S is dependent on IRF3, TBK1, and MyD88, whereas that of E is largely MyD88 independent. Furthermore, these viral surface proteins, specifically E, induced peribronchial inflammation and pulmonary vasculitis in a mouse model. Finally, we show that the organized inflammatory infiltrates are dependent on type I IFN signaling, specifically in lung epithelial cells. These findings underscore the role of SARS-CoV-2 surface proteins, particularly the understudied E protein, in driving cell specific inflammation and their potential for therapeutic intervention.
Project description:Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, continues to spread around the world with serious cases and deaths. It has also been suggested that different genetic variants in the human genome affect both the susceptibility to infection and severity of disease in COVID-19 patients. Angiotensin-converting enzyme 2 (ACE2) has been identified as a cell surface receptor for SARS-CoV and SARS-CoV-2 entry into cells. The construction of an experimental model system using human iPS cells would enable further studies of the association between viral characteristics and genetic variants. Airway and alveolar epithelial cells are cell types of the lung that express high levels of ACE2 and are suitable for in vitro infection experiments. Here, we show that human iPS cell-derived airway and alveolar epithelial cells are highly susceptible to viral infection of SARS-CoV-2. Using gene knockout with CRISPR-Cas9 in human iPS cells we demonstrate that ACE2 plays an essential role in the airway and alveolar epithelial cell entry of SARS-CoV-2 in vitro. Replication of SARS-CoV-2 was strongly suppressed in ACE2 knockout (KO) lung cells. Our model system based on human iPS cell-derived lung cells may be applied to understand the molecular biology regulating viral respiratory infection leading to potential therapeutic developments for COVID-19 and the prevention of future pandemics.
Project description:SARS-CoV-2 infection of human airway epithelium activates genetic programs leading to progressive hyperinflammation in COVID-19 patients. Here, we report on transcriptomes activated in primary airway cells by interferons and their suppression by Janus kinase (JAK) inhibitors. Deciphering the regulation of the angiotensin-converting enzyme 2 (ACE2), the receptor for SARS-CoV-2, is paramount for understanding the cell tropism of SARS-CoV-2 infection. ChIP-seq for activating histone marks and Pol II loading identified candidate enhancer elements controlling the ACE2 locus, including the intronic dACE2 promoter. Employing RNA-seq, we demonstrate that interferons activate expression of dACE2 and, to a lesser extent, the genuine ACE2 gene. Interferon-induced gene expression was mitigated by the JAK inhibitors baricitinib and ruxolitinib, used therapeutically in COVID-19 patients. Through integrating RNA-seq and ChIP-seq data we provide an in-depth understanding of genetic programs activated by interferons, and our study highlights JAK inhibitors as suitable tools to suppress these in bronchial cells.
Project description:BackgroundSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters the host cell by binding to angiotensin-converting enzyme 2 (ACE2) receptors. ACE2 is expressed on human airway epithelial cells. Increased ACE2 expression may be associated with potentially high risk of COVID-19. However, the factors responsible for the regulation of ACE2 expression in human airway epithelial cells are unknown. Furthermore, hyperglycemia is a risk factor for poor disease prognosis.ResultsIn this study, we investigated the effects of D-glucose on ACE2 mRNA and protein expressions in Calu-3 bronchial submucosal cells. The cells were cultured in minimal essential medium containing different D-glucose concentrations. After 48 and 72 h of high D-glucose (1000 mg/dL) treatment, ACE2 mRNA expressions were significantly increased. ACE2 protein expressions were significantly increased after 24 h of high D-glucose treatment. ACE2 mRNA expression was enhanced by a D-glucose concentration of 550 mg/dL or more after 72 h of treatment. In addition, we investigated the role of glucose transporters (GLUTs) in Calu-3 cells. ACE2 mRNA and protein expressions were suppressed by the GLUT1 inhibitor BAY-876 in high D-glucose-treated Calu-3 cells. GLUT-1 siRNA was also used and ACE2 mRNA expressions were suppressed in high D-glucose-treated Calu-3 cells with GLUT-1 knockdown.ConclusionsThis is the first report indicating that high D-glucose levels induced ACE2 expression via GLUT1 in bronchial submucosal cells in vitro. As hyperglycemia can be treated appropriately, these findings could help reduce the risk of worsening of coronavirus disease 2019.
Project description:Environmental mold (fungus) exposure poses a significant threat to public health by causing illnesses ranging from invasive fungal diseases in immune compromised individuals to allergic hypertensive diseases such as asthma and asthma exacerbation in otherwise healthy people. However, the molecular pathogenesis has not been completely understood, and treatment options are limited. Due to its thermo-tolerance to the normal human body temperature, Aspergillus. fumigatus (A.fumigatus) is one of the most important human pathogens to cause different lung fungal diseases including fungal asthma. Airway obstruction and hyperresponsiveness caused by mucus overproduction are the hallmarks of many A.fumigatus induced lung diseases. To understand the underlying molecular mechanism, we have utilized a well-established A.fumigatus extracts (AFE) model to elucidate downstream signal pathways that mediate A.fumigatus induced mucin production in airway epithelial cells. AFE was found to stimulate time- and dose-dependent increase of major airway mucin gene expression (MUC5AC and MUC5B) partly via the elevation of their promoter activities. We also demonstrated that EGFR was required but not sufficient for AFE-induced mucin expression, filling the paradoxical gap from a previous study using the same model. Furthermore, we showed that fungal proteases in AFE were responsible for mucin induction by activating a Ras/Raf1/ERK signaling pathway. Ca2+ signaling, but ROS, both of which were stimulated by fungal proteases, was an indispensable determinant for ERK activation and mucin induction. The discovery of this novel pathway likely contributes to our understanding of the pathogenesis of fungal sensitization in allergic diseases such as fungal asthma.