Project description:Although most autoimmune diseases are considered to be CD4 T cell- or antibody-mediated, many respond to CD20-depleting antibodies that have limited influence on CD4 and plasma cells. This includes rituximab, oblinutuzumab and ofatumumab that are used in cancer, rheumatoid arthritis and off-label in a large number of other autoimmunities and ocrelizumab in multiple sclerosis. Recently, the COVID-19 pandemic created concerns about immunosuppression in autoimmunity, leading to cessation or a delay in immunotherapy treatments. However, based on the known and emerging biology of autoimmunity and COVID-19, it was hypothesised that while B cell depletion should not necessarily expose people to severe SARS-CoV-2-related issues, it may inhibit protective immunity following infection and vaccination. As such, drug-induced B cell subset inhibition, that controls at least some autoimmunities, would not influence innate and CD8 T cell responses, which are central to SARS-CoV-2 elimination, nor the hypercoagulation and innate inflammation causing severe morbidity. This is supported clinically, as the majority of SARS-CoV-2-infected, CD20-depleted people with autoimmunity have recovered. However, protective neutralizing antibody and vaccination responses are predicted to be blunted until naive B cells repopulate, based on B cell repopulation kinetics and vaccination responses, from published rituximab and unpublished ocrelizumab (NCT00676715, NCT02545868) trial data, shown here. This suggests that it may be possible to undertake dose interruption to maintain inflammatory disease control, while allowing effective vaccination against SARS-CoV-29, if and when an effective vaccine is available.
Project description:Background and objectivesDuring the COVID-19 pandemic, B cell depleting therapies pose a clinical concern for patients with neuroimmune conditions, as patients may not mount a sufficient immune response to SARS-CoV-2 infection and vaccinations. Studies to-date have reported conflicting results on the degree of antibody production post-SARS-CoV-2 infection and vaccinations in B cell depleted patients, focusing primarily on short-term immune profiling. Our objective was to follow longitudinal immune responses in COVID-19 B cell depleted patients with neuroimmune disorders post-COVID-19 and SARS-CoV-2-vaccination.MethodsCD20 B cell depleted autoimmune patients and age/sex-matched controls positive for SARS-CoV-2 were recruited at Dell Medical School, UT Austin between 2020 and 2021, followed prospectively for 12 months and evaluated at multiple time points for spike S1 receptor binding domain (RBD) antibody titers, B and T-cell composition, and frequency of T cells specific for SARS-CoV-2 antigens.ResultsImmune responses post-SARS-CoV-2 infection and vaccination were evaluated in a cohort of COVID-19 B cell depleted neuroimmune patients (n = 5), COVID-19 non-B cell depleted autoimmune patients (n = 15), COVID-19 immunocompetent patients (n = 117), and healthy controls (n = 6) for a total of 259 samples in 137 participants. 4/5 B cell-depleted patients developed detectable anti-spike RBD antibodies, which were boosted by vaccination in 2 patients. While spike RBD antibodies were associated with presence of CD20+ B cells, very few B cells were required. In contrast, patients whose B cell compartment primarily consisted of CD19+CD20- Bcells during acute COVID-19 disease or vaccination did not seroconvert. Interestingly, circulating Bcells in B cell depleted patients were significantly CD38high with co-expression of CD24 and CD27, indicating that B cell depletion may impact B cell activation patterns. Additionally, all B cell depleted patients mounted a sustained T cell response to SARS-CoV-2 antigens, regardless of seroconversion. Specifically, all patients developed naïve, central memory, effector memory, and effector memory RA+ T cells, suggesting intact T cell memory conversion in B cell depleted patients compared to controls.DiscussionWe present the longest COVID-19 immune profiling analysis to date in B cell depleted patients, demonstrating that both humoral and cellular immune responses can be generated and sustained up to 12 months post SARS-CoV-2 infection and vaccination. Notably, failure to establish humoral immunity did not result in severe disease. We also highlight specific T- and B- cell signatures that could be used as clinical biomarkers to advise patients on timing of SARS-CoV-2 vaccinations.
Project description:In the last two years, the coronavirus disease 19 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a scientific and social challenge worldwide. Vaccines have been the most effective intervention for reducing virus transmission and disease severity. However, virus genetic variants are still circulating among vaccinated individuals with different symptomatology disease cases. Understanding the protective or disease associated mechanisms in vaccinated individuals is relevant to advance in vaccine development and implementation. To address this objective, serum protein profiles were characterized by quantitative proteomics and data analysis algorithms in four cohorts of vaccinated individuals uninfected and SARS-CoV-2 infected with asymptomatic, nonsevere and severe disease symptomatology. The results showed that immunoglobulins were the most overrepresented proteins in infected cohorts when compared to PCR-negative individuals. The immunoglobulin profile varied between different infected cohorts and correlated with protective or disease associated capacity. Overrepresented immunoglobulins in PCR-positive individuals correlated with protective response against SARS-CoV-2, other viruses, and thrombosis in asymptomatic cases. In nonsevere cases, correlates of protection against SARS-CoV-2 and HBV together with risk of myasthenia gravis and allergy and autoantibodies were observed. Patients with severe symptoms presented risk for allergy, chronic idiopathic thrombocytopenic purpura, and autoantibodies. The analysis of underrepresented immunoglobulins in PCR-positive compared to PCR-negative individuals identified vaccine-induced protective epitopes in various coronavirus proteins including the Spike receptor-binding domain RBD. Non-immunoglobulin proteins were associated with COVID-19 symptoms and biological processes. These results evidence host-associated differences in response to vaccination and the possibility of improving vaccine efficacy against SARS-CoV-2.
Project description:The SARS-CoV-2 Delta (B.1.617.2) variant is capable of infecting vaccinated persons. An open question remains as to whether deficiencies in specific vaccine-elicited immune responses result in susceptibility to vaccine breakthrough infection. We investigated 55 vaccine breakthrough infection cases (mostly Delta) in Singapore, comparing them against 86 vaccinated close contacts who did not contract infection. Vaccine breakthrough cases showed lower memory B cell frequencies against SARS-CoV-2 receptor binding domain (RBD). Compared to plasma antibodies, antibodies secreted by memory B cells retained a higher fraction of neutralizing properties against the Delta variant. Inflammatory cytokines including IL-1β and TNF were lower in vaccine breakthrough infections than primary infection of similar disease severity, underscoring the usefulness of vaccination in preventing inflammation. This report highlights the importance of memory B cells against vaccine breakthrough, and suggests that lower memory B cell levels may be a correlate of risk for Delta vaccine breakthrough infection.
Project description:The objective of this study was to perform a systematic review of the literature on vaccine responsiveness in patients who have received anti-CD20 therapy. PubMed and EMBASE were searched up to 4 January 2021 to identify studies of vaccine immunogenicity in patients treated with anti-CD20 therapy, including patients with hematologic malignancy or autoimmune disease. The primary outcomes were seroprotection (SP), seroconversion (SC), and/or seroresponse rates for each type of vaccine reported. As the pandemic influenza vaccine (2009 H1N1) has standardized definitions for SP and SC, and represented a novel primary antigen similar to the COVID-19 vaccine, meta-analysis was conducted for SC of studies of this vaccine. Pooled estimates, relative benefit ratios (RBs), and 95% confidence intervals (CIs) were calculated using a random-effects model. Thirty-eight studies (905 patients treated with anti-CD20 therapy) were included (19 studies of patients with hematologic malignancies). Patients on active (<3 months since last dose) anti-CD20 therapy had poor responses to all types of vaccines. The pooled estimate for SC after 1 pandemic influenza vaccine dose in these patients was 3% (95% CI, 0% to 9%), with an RB of 0.05 (95% CI, 0-0.73) compared with healthy controls and 0.22 (95% CI, 0.09-0.56) compared with disease controls. SC compared with controls seems abrogated for at least 6 months following treatment (3-6 months post anti-CD20 therapy with an RB of 0.50 [95% CI, 0.24-1.06] compared with healthy and of 0.44 [95% CI, 0.23-0.84] compared with disease controls). For all vaccine types, response to vaccination improves incrementally over time, but may not reach the level of healthy controls even 12 months after therapy.
Project description:Blood collected from adults pre vaccination and post vaccination to study the immune effects of COVID-19 vaccination and how they relate to antibody and T-cell responses.
Project description:High vaccination rates are required around the world to create herd immunity and terminate the current COVID-19 pandemic growth. With the steady rise in COVID-19 vaccine supplies, hesitancy and rejection to be vaccinated has become a problem worldwide for large vaccine coverage. Understanding the causes of vaccine avoidance or hesitancy can help to increase vaccination intentions in the general population. A number of factors contributed to increasing hesitancy. Some causes of COVID-19 vaccine hesitancy include anti-vaccine myths and confusing messages about some severe side effects of few vaccines, confusion over protection levels, poor health literacy (lack of accurate knowledge about vaccines and virus), deficient legal liability from the vaccine manufacturers, political and economic intentions, mistrust and suspicion of medical companies, concern of efficacy against to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants, safety concerns (elderly, people with preexisting comorbidities) and some socio-demographic factors. Urgent interventions and policies targeting the corresponding factors are needed. Recognizing obstacles to vaccine uptake helps in the development of effective solutions to solve them. Evidence-based and behaviorally guided approaches should be used to achieve high acceptance and uptake. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-022-01018-y.