Project description:Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent of the coronavirus disease 2019 (COVID-19) pandemic, which has been a topic of major concern for global human health. The challenge to restrain the COVID-19 pandemic is further compounded by the emergence of several SARS-CoV-2 variants viz. B.1.1.7 (Alpha), B.1.351 (Beta), P1 (Gamma) and B.1.617.2 (Delta), which show increased transmissibility and resistance towards vaccines and therapies. Importantly, there is convincing evidence of increased susceptibility to SARS-CoV-2 infection among individuals with dysregulated immune response and comorbidities. Herein, we provide a comprehensive perspective regarding vulnerability of SARS-CoV-2 infection in patients with underlying medical comorbidities. We discuss ongoing vaccine (mRNA, protein-based, viral vector-based, etc.) and therapeutic (monoclonal antibodies, small molecules, plasma therapy, etc.) modalities designed to curb the COVID-19 pandemic. We also discuss in detail, the challenges posed by different SARS-CoV-2 variants of concern (VOC) identified across the globe and their effects on therapeutic and prophylactic interventions.
Project description:The novel SARS-CoV-2 virus has quickly spread worldwide, bringing the whole world as well as the economy to a standstill. As the world is struggling to minimize the transmission of this devastating disease, several strategies are being actively deployed to develop therapeutic interventions. Pharmaceutical companies and academic researchers are relentlessly working to investigate experimental, repurposed or FDA-approved drugs on a compassionate basis and novel biologics for SARS-CoV-2 prophylaxis and treatment. Presently, a tremendous surge of COVID-19 clinical trials are advancing through different stages. Among currently registered clinical efforts, ~86% are centered on testing small molecules or antibodies either alone or in combination with immunomodulators. The rest ~14% of clinical efforts are aimed at evaluating vaccines and convalescent plasma-based therapies to mitigate the disease's symptoms. This review provides a comprehensive overview of current therapeutic modalities being evaluated against SARS-CoV-2 virus in clinical trials.
Project description:The new type of coronavirus (COVID-19), SARS-CoV-2 originated from Wuhan, China and has led to a worldwide pandemic. COVID-19 is a novel emerging infectious disease caused by SARS-CoV-2 characterized as atypical pneumonia. As of July 1, 2020, more than 10 million people worldwide had been infected with SARS-CoV-2. The typical manifestations of COVID-19 include fever, sore throat, fatigue, cough, and dyspnoea combined with recent exposure. Most of the patients with COVID-19 have mild or moderate disease, however up to 5-10% present with severe and even life-threatening disease course. The mortality rates are approximately 2%. Therefore, there is an urgent need for effective and specific antiviral treatment. Currently, supportive care measures such as ventilation oxygenation and fluid management remain the standard of care. Several clinical trials are currently trying to identify the most potent drug or combination against the disease, and it is strongly recommended to enroll patients into ongoing trials. Antivirals can be proven as safe and effective only in the context of randomized clinical trials. Currently several agents such as chloroquine, hydroxychloroquine, favipiravir, monoclonal antibodies, antisense RNA, corticosteroids, convalescent plasma and vaccines are being evaluated. The large numbers of therapeutic interventions aim to define the most efficacious regimen. The aim of this article is to describe the treatment strategies that have been used for COVID-19 patients and review all the available literature.
Project description:Initially, the SARS-CoV-2 virus was considered as a pneumonia virus; however, a series of peer reviewed medical papers published in the last eight months suggest that this virus attacks the brain, heart, intestine, nervous and vascular systems, as well the blood stream. Although many facts remain unknown, an objective appraisal of the current scientific literature addressing the latest progress on COVID-19 is required. The aim of the present study was to conduct a critical review of the literature, focusing on the current molecular structure of SARS-CoV-2 and prospective treatment modalities of COVID-19. The main objectives were to collect, scrutinize and objectively evaluate the current scientific evidence-based information, as well to provide an updated overview of the topic that is ongoing. The authors underlined potential prospective therapies, including vaccine and phototherapy, as a monotherapy or combined with current treatment modalities. The authors concluded that this review has produced high quality evidence, which can be utilized by the clinical scientific community for future reference, as the knowledge and understanding of the SARS-CoV-2 virus are evolving, in terms of its epidemiological, pathogenicity, and clinical manifestations, which ultimately map the strategic path, towards an effective and safe treatment and production of a reliable and potent vaccine.
Project description:Coronavirus disease 19 (COVID-19) is a rapidly evolving pandemic caused by the coronavirus Sars-CoV-2. Clinically manifest central nervous system symptoms have been described in COVID-19 patients and could be the consequence of commonly associated vascular pathology, but the detailed neuropathological sequelae remain largely unknown. A total of six cases, all positive for Sars-CoV-2, showed evidence of cerebral petechial hemorrhages and microthrombi at autopsy. Two out of six patients showed an elevated risk for disseminated intravascular coagulopathy according to current criteria and were excluded from further analysis. In the remaining four patients, the hemorrhages were most prominent at the grey and white matter junction of the neocortex, but were also found in the brainstem, deep grey matter structures and cerebellum. Two patients showed vascular intramural inflammatory infiltrates, consistent with Sars-CoV-2-associated endotheliitis, which was associated by elevated levels of the Sars-CoV-2 receptor ACE2 in the brain vasculature. Distribution and morphology of patchy brain microbleeds was clearly distinct from hypertension-related hemorrhage, critical illness-associated microbleeds and cerebral amyloid angiopathy, which was ruled out by immunohistochemistry. Cerebral microhemorrhages in COVID-19 patients could be a consequence of Sars- CoV-2-induced endotheliitis and more general vasculopathic changes and may correlate with an increased risk of vascular encephalopathy.
Project description:Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has now become a serious global threat after inflicting more than 8 million infections and 425,000 deaths in less than 6 months. Currently, no definitive treatment or prevention therapy exists for COVID-19. The unprecedented rise of this pandemic has rapidly fueled research efforts to discover and develop new vaccines and treatment strategies against this novel coronavirus. While hundreds of vaccines/therapeutics are still in the preclinical or early stage of clinical development, a few of them have shown promising results in controlling the infection. Here, in this review, we discuss the promising vaccines and treatment options for COVID-19, their challenges, and potential alternative strategies.
Project description:The outbreak of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) has led to coronavirus disease-19 (COVID-19); a pandemic disease that has resulted in devastating social, economic, morbidity and mortality burdens. SARS-CoV-2 infects cells following receptor-mediated endocytosis and priming by cellular proteases. Following uptake, SARS-CoV-2 replicates in autophagosome-like structures in the cytosol following its escape from endolysosomes. Accordingly, the greater endolysosome pathway including autophagosomes and the mTOR sensor may be targets for therapeutic interventions against SARS-CoV-2 infection and COVID-19 pathogenesis. Naturally existing compounds (phytochemicals) through their actions on endolysosomes and mTOR signaling pathways might provide therapeutic relief against COVID-19. Here, we discuss evidence that some natural compounds through actions on the greater endolysosome system can inhibit SARS-CoV-2 infectivity and thereby might be repurposed for use against COVID-19.
Project description:We study emerging markets' 1980s lost growth decade, triggered by the massive reversal of the snowball effect in the US during 1974-1984, finding that higher flow costs of servicing debt overhang explain the dramatic decline in growth rates of exposed emerging markets. We also show how lowering the US cost of servicing its public debt has been associated with higher US, Japan, and Western Europe real output growth rates during the post WWII recovery decades, 1946-1956, and validate that fiscal adjustments of large countries have strong growth and volatility spillovers effects on exposed emerging markets and developing countries.