The thermal dependence and molecular basis of physiological color change in Takydromus septentrionalis (Lacertidae).
Ontology highlight
ABSTRACT: One of the main functions of physiological color change is thermoregulation. This change occurs much more rapidly than morphological color change, but the underlying mechanism remains poorly understood. Here, we studied the thermal dependence and molecular basis of physiological color change in lizards using Takydromus septentrionalis (Lacertidae) as the model system. Body color was thermally sensitive, becoming increasingly light as body temperatures deviated from the level (∼30°C) preferred by this species. We identified 3389 differentially expressed genes (DEGs) between lizards at 24°C and 30°C, and 1,097 DEGs between lizards at 36°C and 30°C. Temperature affected the cAMP signal pathway, motor proteins, cytoskeleton, and the expression of genes related to melanocyte-stimulating hormone (MSH) and melanocyte-concentrating hormone (MCH). Our data suggest that the role of physiological color change in thermoregulation is achieved in T. septentrionalis by altering the arrangement of pigments and thus the amount of solar radiation absorbed and reflected. G protein-coupling system inhibits adenylate cyclase activity to transform ATP into cAMP and thereby causes rapid pigment aggregation. MCH deactivates the G proteins and thereby initiates pigment dispersion. This mechanism differs from that reported for teleost fish where MCH activates the G proteins and thereby causes pigment aggregation.This article has an associated First Person interview with the first author of the paper.
SUBMITTER: Guo K
PROVIDER: S-EPMC8015239 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA