Project description:A new nematode species of the genus Phasmarhabditis was isolated from the body surface of a slug (Philomycus bilineatus Benson, PB). Morphological and molecular analyses confirmed this nematode as a new species. The nematode was named Phasmarhabditis zhejiangensis sp. nov. (Nematoda: Rhabditidae) and is dioecious. In males, the open bursa with genital papillae is characterized by the formula 1-1-1-2-1-3, and the spicule length is 58μm. In female, the vulva is located approximately in the middle of the body. The nematode belongs to papillosa group because of its tail shape pointed with filiform tip. The phasmids are rod-shaped. The posterior anus is slightly swollen. P. zhejiangensis was further characterized by internal transcribed spacer (ITS), 18S rDNA and 28S rDNA sequences. After the sequencing results were compared with sequences available from the National Center for Biotechnology Information (NCBI), the maximum similarities of ITS, 18S and 28S sequences were 89.81%, 96.22% and 95.28%, respectively. Phylogenetic analyses placed Phasmarhabditis zhejiangensis sp. nov. in the genus Phasmarhabditis.
Project description:Three species of Phasmarhabditis were recovered from 75 nurseries and garden centers in 28 counties in California during fall and winter 2012-2021. A total of 18 mollusk species were recovered, most of them invasive. Nematodes were identified by sequencing the D2-D3 expansion segments of the large subunit (LSU or 28S) rRNA. Based on these surveys, P. californica was the most widespread species (37 isolates, 53.6% recovery); followed by P. hermaphrodita (26 isolates; 37.7% recovery); P. papillosa and a closely related P. papillosa isolate (6 isolates; 8.7% recovery). Nematode isolates were mainly collected from four invasive slugs (Deroceras reticulatum, D. laeve, Arion hortensis agg, Ambigolimax valentianus) and snails (Oxychilus spp. and Discus spp.). Results suggest that P. californica and P. hermaphrodita share an ecological niche in Northern, Central, Coastal, and Southern California, north of Los Angeles County.
Project description:The genus Phasmarhabditis is an economically important group of rhabditid nematodes, to which the well-known slug-parasite P. hermaphrodita belongs. Despite the commercial use of Phasmarhabditis species as an attractive and promising approach for pest control, the taxonomy and systematics of this group of rhabditids are poorly understood, largely because of the lack of diagnostic morphological features and DNA sequences for distinguishing species or inferring phylogenetic relationship. During a nematode sampling effort for identifying free-living relatives of Caenorhabditis elegans in Huizhou City, Guangdong, China, a novel species belonging to the genus Phasmarhabditis was isolated from rotting leaves. Detailed morphology of the gonochoristic P. huizhouensis sp. nov. was described and illustrated. The adult female has a robust body, a relatively short and wide buccal capsule conjoined by a rhabditiform pharynx. Females are characterized by a short cupola-shaped tail end bearing a slender pointed tip, with the junction flanked by a pair of 'rod-like' phasmids. Males have an open peloderan bursa that is supported by 9 pairs of genital papillae and 1 terminal pair of phasmids. P. huizhouensis sp. nov. is morphologically very similar to the type species Phasmarhabditis papillosa but is distinguishable by its male caudal traits. The new species is readily differentiated from other taxa in the genus by its female tail shape. Molecular phylogenetic inferences based on small subunit (SSU) and the D2-D3 domain of large subunit (LSU) ribosomal DNA genes reveal that P. huizhouensis sp. nov. forms a unique branch in both phylogenies which is genetically related to P. hermaphrodita and other parasites such as Angiostoma spp. The host associations of P. huizhouensis sp. nov. and its ability to parasitize slugs are unknown.
Project description:Recently, much attention has been focused on a group of rhabditid nematodes called Phasmarhabditis, a junior synonym of Pellioditis, as a promising source of biocontrol agents for invasive slugs. Pellioditis pelhamensis n. sp. was first isolated from earthworms near Pelham Bay Park in Bronx, New York, USA, in 1990 and has been found to be pathogenic to slugs as well as some earthworms. It has also been used in several comparative developmental studies. Here, we provide a description of this species, as well as a redescription of a similar earthworm-associated nematode, Pellioditis pellio Schneider, 1866, re-isolated from the type locality. Although P. pelhamensis n. sp. and P. pellio are morphologically similar, they are reproductively isolated. Molecular phylogenetic analysis places both species in a clade that includes all species previously described as Phasmarhabditis which are associated with gastropods. Phasmarhabditis Andrássy, 1976 is therefore a junior synonym of Pellioditis Dougherty, 1953. Also, Pellioditis bohemica Nermut', Půža, Mekete & Mráček, 2017, described to be a facultative parasite of slugs, is found to be a junior synonym of Pellioditis pellio (Schneider, 1866), adding to evidence that P. pellio is associated with both slugs and earthworms. The earthworm-associated species P. pelhamensis n. sp. and P. pellio represent different subclades within Pellioditis, suggesting that Pellioditis species in general have a broader host range than just slugs. Because of this, caution is warranted in using these species as biological control agents until more is understood about their ecology.
Project description:In a search for an entomopathogenic nematode to control cranberry insect pests, three Oscheius populations (Rhabditidae) were recovered through the Galleria-bait method from one sample taken in a wild cranberry marsh in Jackson County, Wisconsin, USA. Morphological studies with light microscopy and scanning electron microscopy, as well as molecular analyses of the near-full-length small subunit rDNA gene, D2/D3 expansion segments of the large subunit rDNA gene, internal transcribed spacer, and mitochondrial cytochrome oxidase subunit 1 (CoxI) genes revealed this as Oscheius onirici, a species recently described from a karst cave soil of central Italy. The species belongs to the dolichura-group and is characterized by its DNA sequences; hermaphroditic reproduction; and males not found. A Bacillus-like bacterium appears to be associated with this nematode based on our microscopic and SEM observations; however its identity and persistent association with the nematode has not been confirmed. Nonetheless, this nematode is capable of infecting and killing the sparganothis fruitworm Sparganothis sulfureana Clemens (Lepidoptera: Tortricidae), the brown-banded cockroach Supella longipalpa Fabricius (Blattodea: Ectobiidae), and the cranberry fruitworm Acrobasis vaccinii Riley (Lepidoptera: Pyralidae), under laboratory conditions, and each in less than 72?hr. The mealworm Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae) and the greater wax moth Galleria mellonella Linnaeus (Lepidoptera: Pyralidae), are also susceptible, but take 3.5 and 5.2 days to die, respectively. This species is a new potential bio-control agent on insects.
Project description:A new species, Oscheius microvilli n. sp., was found on Chongming Island (Shanghai, China). The new species is morphologically similar to the type strain of Oscheius myriophilus, but can be distinguished from it and other species of Oscheius on the basis of unique morphological characteristics of the bursa as well as male papillae. In this new species, the male bursal papillar formula is 2, 1, 3, 3 with everted tips in the first, fifth, and seventh pairs. The bursal rim is jagged, joins together anterior to the spicules, and is partially extended and decorated with microvilli. The spicules are incompletely separated, and the tail does not extend beyond the bursa. Phylogenetic trees of 18S rDNA and internal transcribed spacer indicate that the new species belongs to the insectivora group of the genus Oscheius; it is most closely related to O. myriophilus, and the two species can be distinguished on the basis of their different body length, morphological features of the bursa, and molecular data. The new species is facultatively associated with a bacterial strain of Serratia. The LC50 of this novel nematode against Galleria mellonella was 69.1 dauer juveniles per milliliter after 48 hr of infection.
Project description:In the present study, we reported the complete mitogenome sequence of Caenorhabditis tribulationis Stevens & Félix 2019. The whole mitogenome of C. tribulationis is 14006 bp in length with an extreme bias of high AT content (75.26%) (GenBank accession no. OL362111). The mitochondrial genome contains 12 protein-coding genes (PCGs), 22 transfer RNA (tRNAs) genes, 2 ribosomal RNA (12S rRNA and 16S rRNA) genes, and a control region. All genes were unidirectionally transcribed on the same strand, typical for other nematode mitogenomes. 9 PCGs were initiated by typical ATN codons, except for NAD2, CYTB and NAD4, which were start with TTG codons. All the PCGs were predicted to use the typical TAN as the stop codons. The phylogenetic analysis showed that the relationship of C. tribulationis is very close to other species in the family Rhabditidae and separated form species of the families Ascarididae, Toxocaridae, Anisakidae and Ascaridiidae with high bootstrap value support.
Project description:The objective of this work was to determine the effectiveness of cross-hybridization of gDNA from five native soil nematodes to an Affymetrix Caenorhabditis elegans tiling array. Cross-hybridization experiments using C. briggsae, for which genome information is available, allowed hybridisation intensities to be correlated with known sequence differences. Initial analysis of data by conventional array-based Comparative Genomic Hybridization (aCGH) techniques at the chip level lead to misleading results due to an artefact from the combination of scaling, bandwidth smoothing, and differential GC content in exon and intron regions. To circumvent this artefact, individual probes were instead normalized and centered by adjusting for probe-specific thermodynamic binding affinity. However, cross-hybridization of C. briggsae DNA revealed that the resultant probe intensities alone were still uncorrelated to sequence similarity below 90% identity. Below 90% similarity, all probes hybridize uniformly poorly, and above 90% similarity the hybridization differences are not large enough to detect over background, therefore, no 'threshold' ratio of hybridization intensity was successful at identifying probes with similarity to the heterologous genome. In light of the observations described here, we suggest that the criteria for replication and verification of gene expression profiles generated from cross-species microarray hybridizations be more stringent than typically adopted for con-specific hybridizations.
Project description:We re-isolated in China a relative of the nematode model Caenorhabditis elegans that was previously referred to informally as C. sp. 5. In spite of its importance for comparative biology, C. sp. 5 has remained morphologically uncharacterized. Therefore, we now provide detailed description of morphology and anatomy, assigning the name of Caenorhabditis sinica sp. n. to this nematode that is found frequently in China. C. sinica sp. n. belongs to the Elegans group in the genus Caenorhabditis, being phylogenetically close to C. briggsae although differing in reproductive mode. The gonochoristic C. sinica sp. n. displays two significantly larger distal parts of uteri filled with sperms in the female/hermaphroditic gonad than does the androdioecious C. briggsae. The new species can be differentiated morphologically from all known Caenorhabditis species within the Elegans group by presenting a uniquely shaped, three-pointed hook structure on the male precloacal lip. The lateral field of C. sinica sp. n. is marked by three ridges that are flanked by two additional incisures, sometimes appearing as five ridges in total. This study ends the prolonged period of the 'undescribed' anonymity for C. sinica sp. n. since its discovery and use in comparative biological research. Significant and crossing-direction dependent hybrid incompatibilities in F1 and F2 crossing progeny make C. sinica sp. n. an excellent model for studies of population and speciation genetics. The abundance of nematode species lacking detailed taxonomic characterization deserves renewed attention to address the species description gap for this important yet morphologically 'difficult' group of animals.