Unknown

Dataset Information

0

Alignment of single-cell RNA-seq samples without overcorrection using kernel density matching.


ABSTRACT: Single-cell RNA sequencing (scRNA-seq) technology is poised to replace bulk cell RNA sequencing for many biological and medical applications as it allows users to measure gene expression levels in a cell type-specific manner. However, data produced by scRNA-seq often exhibit batch effects that can be specific to a cell type, to a sample, or to an experiment, which prevent integration or comparisons across multiple experiments. Here, we present Dmatch, a method that leverages an external expression atlas of human primary cells and kernel density matching to align multiple scRNA-seq experiments for downstream biological analysis. Dmatch facilitates alignment of scRNA-seq data sets with cell types that may overlap only partially and thus allows integration of multiple distinct scRNA-seq experiments to extract biological insights. In simulation, Dmatch compares favorably to other alignment methods, both in terms of reducing sample-specific clustering and in terms of avoiding overcorrection. When applied to scRNA-seq data collected from clinical samples in a healthy individual and five autoimmune disease patients, Dmatch enabled cell type-specific differential gene expression comparisons across biopsy sites and disease conditions and uncovered a shared population of pro-inflammatory monocytes across biopsy sites in RA patients. We further show that Dmatch increases the number of eQTLs mapped from population scRNA-seq data. Dmatch is fast, scalable, and improves the utility of scRNA-seq for several important applications. Dmatch is freely available online.

SUBMITTER: Chen M 

PROVIDER: S-EPMC8015859 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-ECPF-GEOD-40890 | biostudies-other
| S-EPMC8418522 | biostudies-literature
| S-EPMC8076908 | biostudies-literature
| S-EPMC10868328 | biostudies-literature
| S-EPMC2881391 | biostudies-literature
| S-EPMC7202009 | biostudies-literature
| S-EPMC6954654 | biostudies-literature
| S-ECPF-ERAD-61 | biostudies-other
| S-EPMC8237319 | biostudies-literature
| S-EPMC7276436 | biostudies-literature