Unknown

Dataset Information

0

Lithiation Mechanism in High-Entropy Oxides as Anode Materials for Li-Ion Batteries: An Operando XAS Study.


ABSTRACT: High-entropy oxides based on transition metals, such as Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O (TM-HEO), have recently drawn special attention as potential anodes in lithium-ion batteries due to high specific capacity and cycling reversibility. However, the lithiation/delithiation mechanism of such systems is still controversial and not clearly addressed. Here, we report on an operando XAS investigation into TM-HEO-based anodes for lithium-ion cells during the first lithiation/delithiation cycle. This material showed a high specific capacity exceeding 600 mAh g-1 at 0.1 C and Coulombic efficiency very close to unity. The combination of functional and advanced spectroscopic studies revealed complex charging mechanisms, developing through the reduction of transition-metal (TM) cations, which triggers the conversion reaction below 1.0 V. The conversion is irreversible and incomplete, leading to the final collapse of the HEO rock-salt structure. Other redox processes are therefore discussed and called to account for the observed cycling behavior of the TM-HEO-based anode. Despite the irreversible phenomena, the HEO cubic structure remains intact for ∼60% of lithiation capacity, so proving the beneficial role of the configuration entropy in enhancing the stability of the HEO rock-salt structure during the redox phenomena.

SUBMITTER: Ghigna P 

PROVIDER: S-EPMC8016163 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC8642430 | biostudies-literature
| S-EPMC9781618 | biostudies-literature
| S-EPMC6648262 | biostudies-literature
| S-EPMC8224428 | biostudies-literature
| S-EPMC7826646 | biostudies-literature
| S-EPMC8640940 | biostudies-literature
| S-EPMC5869306 | biostudies-literature
| S-EPMC9880953 | biostudies-literature
| S-EPMC9042803 | biostudies-literature
| S-EPMC9044169 | biostudies-literature