Project description:IntroductionKaranahan, a cancer treatment technology aimed at eradicating tumor-initiating stem cells, has already proven effective in 7 tumor models. Karanahan comprises the following procedures: (1) collecting surgical specimens, (2) determining the duration of the DNA repair process in tumor cells exposed to a cross-linking cytostatic agent, and (3) determining the time point, when cells, including tumor-initiating stem cells, are synchronized in the certain phase of the cell cycle after triple exposure to the cytostatic, becoming vulnerable for the terminal treatment, which is supposed to completely eliminate the rest of survived tumor-initiating stem cells. Determining these basic tumor properties allows to design the schedule for the administration of a cross-linking cytostatic and a complex composite DNA preparation. Being conducted in accordance with the schedule designed, Karanahan results in the large-scale apoptosis of tumor cells with elimination of tumor-initiating stem cells.MethodsBreast tumor specimens were obtained from patients, and basic tumor properties essential for conducting Karanahan therapy were determined.ResultsWe report the first use of Karanahan in patients diagnosed with breast cancer. Technical details of handling surgical specimens for determining the essential Karanahan parameters (tumor volume, cell number, cell proliferation status, etc) have been worked out. The terminally ill patient, who was undergoing palliative treatment and whose tumor specimen matched the required criteria, received a complete course of Karanahan.ConclusionsThe results of the treatment conducted indicate that Karanahan technology has a therapeutic potency and can be used as a breast cancer treatment option.
Project description:Insulin resistance potentiates the association between obesity and childhood asthma, but this relationship appears inconsistent in relatively small studies of adults. We investigated effect modification in adults using the National Health and Nutrition Examination Survey 2003-2012, a large, nationally representative database.Insulin resistance and a history of physician-diagnosed current asthma were obtained from 12?421 adults, ages 18-85?years. We used logistic regression to determine associations between obesity and current asthma, adjusting for age, sex, race/ethnicity, poverty income ratio and smoking status. An interaction term evaluated effect modification by insulin resistance of the obesity-asthma association.As expected, obesity was positively associated with current asthma. Insulin resistance modified this association, with obesity measured as body mass index, waist circumference or waist-to-height ratio. The relationship between obesity and current asthma was stronger with increasing insulin resistance tertiles (OR 2.05, 95% CI 2.76-3.00; p-value for interaction 0.03). This association was robust to adjustments for other components of the metabolic syndrome (hypertriglyceridaemia, hypertension, hyperglycaemia and systemic inflammation). None of these components were themselves effect modifiers of the obesity-asthma association.In this large, nationally representative sample, insulin resistance modified the association between obesity and current asthma in adults. Targeting insulin resistance may represent a novel therapeutic strategy for obese patients with asthma.
Project description:Bronchial thermoplasty is a young yet promising treatment for severe asthma whose benefit for long-term asthma control outweighs the short-term risk of deterioration and hospitalisation in the days following the treatment. It is an innovative treatment whose clinical efficacy and safety are beginning to be better understood. Since this is a device-based therapy, the overall evaluation of risk-benefit is unlike that of pharmaceutical products; safety aspects, regulatory requirements, study design and effect size assessment may be unfamiliar. The mechanisms of action and optimal patient selection need to be addressed in further rigorous clinical and scientific studies. Bronchial thermoplasty fits in perfectly with the movement to expand personalised medicine in the field of chronic airway disorders. This is a device-based complimentary asthma treatment that must be supported and developed in order to meet the unmet needs of modern severe asthma management. The mechanisms of action and the type of patients that benefit from bronchial thermoplasty are the most important challenges for bronchial thermoplasty in the future.
Project description:Obesity is a critical health concern, and identifying new biomarkers has become essential for better understanding the progression to disease such as type 2 diabetes. DNA methylation has become a useful epigenetic biomarker in part due to its susceptibility to disease influence. Detecting methylation changes in blood is important as it is an easily accessible, compared to the insulin responsive tissue skeletal muscle. The aim of our study was to identify methylation changes in whole blood that were strongly associated with obesity associated insulin resistance. Whole blood was obtained from lean (n=10; BMI= 23.6±0.7 kg/m2) and obese (n=10; BMI= 34.4±1.3 kg/m2) participants in combination with euglycemic hyperinsulinemic clamps to assess insulin sensitivity. We performed the next generation technique, reduced representation bisulfite sequencing (RRBS) on isolated genomic DNA. There were 49 significantly altered differentially methylated cytosines (DMCs; q<0.05). Of these, solute carrier family 19 member 1 (SLC19A1) was also identified using a differentially methylated region approach. The sites for this gene were significantly correlated (P<0.05) with body mass index, body fat percent, and the clamp Rd. Moreover, the decrease in SLC19A1 methylation was similar to the change previously found in skeletal muscle. Pyrosequencing confirmed the changes in methylation at Chr.21:46,957,915 in both tissues. These results demonstrate that the methylation status of SLC19A1 provides a new potential epigenetic biomarker for obesity related insulin resistance.
Project description:Prevalence of type 2 diabetes (T2D) and obesity is increasing worldwide. Currently available therapies are not suited for all patients in the heterogeneous obese/T2D population, hence the need for novel treatments. Fibroblast growth factor 21 (FGF21) is considered a promising therapeutic agent for T2D/obesity. Native FGF21 has, however, poor pharmacokinetic properties, making gene therapy an attractive strategy to achieve sustained circulating levels of this protein. Here, adeno-associated viral vectors (AAV) were used to genetically engineer liver, adipose tissue, or skeletal muscle to secrete FGF21. Treatment of animals under long-term high-fat diet feeding or of ob/ob mice resulted in marked reductions in body weight, adipose tissue hypertrophy and inflammation, hepatic steatosis, inflammation and fibrosis, and insulin resistance for > 1 year. This therapeutic effect was achieved in the absence of side effects despite continuously elevated serum FGF21. Furthermore, FGF21 overproduction in healthy animals fed a standard diet prevented the increase in weight and insulin resistance associated with aging. Our study underscores the potential of FGF21 gene therapy to treat obesity, insulin resistance, and T2D.
Project description:Obesity can increase the risk of complex metabolic diseases, including insulin resistance. Moreover, obesity can be caused by environmental and genetic factors. However, the epigenetic mechanisms of obesity are not well defined. Therefore, the identification of novel epigenetic biomarkers of obesity allows for a more complete understanding of the disease and its underlying insulin resistance. The aim of our study was to identify DNA methylation changes in whole-blood that were strongly associated with obesity and insulin resistance. Whole-blood was obtained from lean (n = 10; BMI = 23.6 ± 0.7 kg/m2) and obese (n = 10; BMI = 34.4 ± 1.3 kg/m2) participants in combination with euglycemic hyperinsulinemic clamps to assess insulin sensitivity. We performed reduced representation bisulfite sequencing on genomic DNA isolated from the blood. We identified 49 differentially methylated cytosines (DMCs; q < 0.05) that were altered in obese compared with lean participants. We identified 2 sites (Chr.21:46,957,981 and Chr.21:46,957,915) in the 5' untranslated region of solute carrier family 19 member 1 (SLC19A1) with decreased methylation in obese participants (lean 0.73 ± 0.11 vs. obese 0.09 ± 0.05; lean 0.68 ± 0.10 vs. obese 0.09 ± 0.05, respectively). These 2 DMCs identified by obesity were also significantly predicted by insulin sensitivity (r = 0.68, P = 0.003; r = 0.66; P = 0.004). In addition, we performed a differentially methylated region (DMR) analysis and demonstrated a decrease in methylation of Chr.21:46,957,915-46,958,001 in SLC19A1 of -34.9% (70.4% lean vs. 35.5% obese). The decrease in whole-blood SLC19A1 methylation in our obese participants was similar to the change observed in skeletal muscle (Chr.21:46,957,981, lean 0.70 ± 0.09 vs. obese 0.31 ± 0.11 and Chr.21:46,957,915, lean 0.72 ± 0.11 vs. obese 0.31 ± 0.13). Pyrosequencing analysis further demonstrated a decrease in methylation at Chr.21:46,957,915 in both whole-blood (lean 0.71 ± 0.10 vs. obese 0.18 ± 0.06) and skeletal muscle (lean 0.71 ± 0.10 vs. obese 0.30 ± 0.11). Our findings demonstrate a new potential epigenetic biomarker, SLC19A1, for obesity and its underlying insulin resistance.
Project description:Despite treatment with standard-of-care medications, including currently available biologic therapies, many patients with severe asthma have uncontrolled disease, which is associated with a high risk of hospitalization and high healthcare costs. Biologic therapies approved for severe asthma have indications limited to patients with either eosinophilic or allergic phenotypes; there are currently no approved biologics for patients with eosinophil-low asthma. Furthermore, existing biologic treatments decrease exacerbation rates by approximately 50% only, which may be because they target individual, downstream elements of the asthma inflammatory response, leaving other components untreated. Targeting an upstream mediator of the inflammatory response may have a broader effect on airway inflammation and provide more effective asthma control. One such potential target is thymic stromal lymphopoietin (TSLP), an epithelial-derived cytokine released in response to multiple triggers associated with asthma exacerbations, such as viruses, allergens, pollutants and other airborne irritants. Mechanistic studies indicate that TSLP drives eosinophilic (including allergic) inflammation, neutrophilic inflammation and structural changes to the airway in asthma through actions on a wide variety of adaptive and innate immune cells and structural cells. Tezepelumab is a first-in-class human monoclonal antibody that blocks the activity of TSLP. In the phase 2b PATHWAY study (NCT02054130), tezepelumab reduced asthma exacerbations by up to 71% compared with placebo in patients with severe, uncontrolled asthma across the spectrum of inflammatory phenotypes, and improved lung function and asthma control. Phase 3 trials of tezepelumab are underway. NAVIGATOR (NCT03347279), a pivotal exacerbation study, aims to assess the potential efficacy of tezepelumab further in patients with a broad range of severe asthma phenotypes, including those with low blood eosinophil counts. SOURCE (NCT03406078) aims to evaluate the oral corticosteroid-sparing potential of tezepelumab. DESTINATION (NCT03706079) is a long-term extension study. In addition, an ongoing phase 2 bronchoscopy study, CASCADE (NCT03688074), aims to evaluate the effect of tezepelumab on airway inflammation and airway remodelling in patients across the spectrum of type 2 airway inflammation. Here, we summarize the unmet therapeutic need in severe asthma and the current treatment landscape, discuss the rationale for targeting TSLP in severe asthma therapy and describe the current development status of tezepelumab.
Project description:Insulin resistance is a major characteristic of obesity and type 2 diabetes, but the underlying mechanism is unclear. Recent studies have shown a metabolic role of capsaicin that may be mediated via the transient receptor potential vanilloid type-1 (TRPV1) channel. In this study, TRPV1 knockout (KO) and wild-type (WT) mice (as controls) were fed a high-fat diet (HFD), and metabolic studies were performed to measure insulin and leptin action. The TRPV1 KO mice became more obese than the WT mice after HFD, partly attributed to altered energy balance and leptin resistance in the KO mice. The hyperinsulinemic-euglycemic clamp experiment showed that the TRPV1 KO mice were more insulin resistant after HFD because of the ?40% reduction in glucose metabolism in the white and brown adipose tissue, compared with that in the WT mice. Leptin treatment failed to suppress food intake, and leptin-mediated hypothalamic signal transducer and activator of transcription (STAT)-3 activity was blunted in the TRPV1 KO mice. We also found that the TRPV1 KO mice were more obese and insulin resistant than the WT mice at 9 mo of age. Taken together, these results indicate that lacking TRPV1 exacerbates the obesity and insulin resistance associated with an HFD and aging, and our findings further suggest that TRPV1 has a major role in regulating glucose metabolism and hypothalamic leptin's effects in obesity.
Project description:Evidence from observational and in vitro studies suggests that insulin growth-factor-binding protein type 2 (IGFBP2) is a promising protein in non-communicable diseases, such as obesity, insulin resistance, metabolic syndrome, or type 2 diabetes. Accordingly, great efforts have been carried out to explore the role of IGFBP2 in obesity state and insulin-related diseases, which it is typically found decreased. However, the physiological pathways have not been explored yet, and the relevance of IGFBP2 as an important pathway integrator of metabolic disorders is still unknown. Here, we review and discuss the molecular structure of IGFBP2 as the first element of regulating the expression of IGFBP2. We highlight an update of the association between low serum IGFBP2 and an increased risk of obesity, type 2 diabetes, metabolic syndrome, and low insulin sensitivity. We hypothesize mechanisms of IGFBP2 on the development of obesity and insulin resistance in an insulin-independent manner, which meant that could be evaluated as a therapeutic target. Finally, we cover the most interesting lifestyle modifications that regulate IGFBP2, since lifestyle factors (diet and/or physical activity) are associated with important variations in serum IGFBP2.
Project description:There is mounting evidence that obesity is associated with asthma, both of which are seeing a dramatic increase in prevalence. Not only is obesity a risk factor for the development of asthma but it is also associated with poor asthma control. Asthma phenotypes associated with obesity include early-onset allergic asthma and late-onset non-allergic asthma. The pathogenesis of the linkage is complex; obesity causes a variety of mechanical, metabolic, and immunological changes that can affect the airways. The treatment of asthma in obesity can be challenging, as obesity is associated with poor response to standard controller medications. A tailored approach that involves combining pharmacologic and non-pharmacologic therapies including weight loss, dietary interventions, and exercise, along with identification and treatment of obstructive sleep apnea, should therefore be considered in this population.