Project description:Background: Clinical transcriptomics of peripheral blood mononuclear cells (PBMC) are coming into focus as a surrogate approach for prognosis, diagnosis, biomarker discovery and examination disease mechanisms. However, bioassays paired with transcriptomic analytic tools are yet to be developed and made available at point of care. Harnessing personal dynamic genomic responses to tailor patient asthma treatment or prevent disease exacerbations remain unmet medical needs. Method: We developed a rhinovirus-stimulated peripheral blood based-assay (virogram assay) coupled with single-subject analytics (N-of-1-patwhays) to capture dynamic genome-wide expression and dysregulated pathways to retrospectively predict childhood asthma exacerbation. We hypothesized that some genomic factors might predispose any given individual, healthy or asthmatic, to a set of similar transcriptional responses to rhinovirus stimulation. We first generated a classifier from paired sample microarrays, control and stimulated PBMC from healthy subjects and applied this classifier on the transcriptomic analysis of control and HRV-stimulated PBMC samples (virogram assay) from children with asthma. Results: The analysis of the different genomic responses of single-subject paired PBMC samples (HRV-stimulated and control) derived from healthy individuals (external dataset) enabled the discovery of dysregulated pathways related to acquired immunity, epigenetics and morphogenesis. The classifier built on these results and applied on the transcriptional analysis derived from the virogram assay predicted that the risk of asthma exacerbation among asthmatic subjects with an accuracy of 70%. Conclusion: We provide evidence that clinical prognosis can be predicted with a PBMC based-bioassay aligned with adequate single-subject analytics to assess dynamic transcriptomic response to specific disease-associated stimuli.
Project description:Recent reports on COVID-19 suggest that, the susceptibility to COVID-19 infection and its progression have a genetic predisposition. Majorly associated genetic variants are found in human leukocyte antigen (HLA), angiotensin convertase enzyme (ACE; rs1799752: ACE2; rs73635825), and transmembrane protease serine 2 (TMPRSS-2; rs12329760) genes. Identifying highly prone population having these variants is imperative for determining COVID-19 therapeutic strategies. Ayurveda (Indian traditional system of medicine) concept of Prakriti holds potential to predict genomic and phenotypic variations. Reported work on Prakriti correlates HLA-DR alleles with three broad phenotypes (Tridosha) described in Ayurveda (AyuGenomics). This is suggestive of differences in immune responses in individuals with specific constitutions. Therefore, the reported studies provide clues for clinically relevant hypotheses to be tested in systematic studies. The proposed approach of Ayurveda-based phenotype screening may offer a way ahead to design customized strategies for management of COVID-19 based on differences in Prakriti, immune response, and drug response. However, this needs clinical evaluation of the relation between Prakriti and genetic or phenotypic variants in COVID-19 prone and resistant populations.
Project description:Several studies have identified rare and common genetic variants associated with severe COVID-19, but no study has reported genetic determinants as predisposition factors for neurological complications. In this report, we identified rare/unique structural variants (SVs) implicated in neurological functions in two individuals with neurological manifestations of COVID-19. This report highlights the possible genetic link to the neurological symptoms with COVID-19 and calls for a collective effort to study these cohorts for a possible genetic linkage.
Project description:The use of face masks as a means for preventing the spread of SARS-CoV-2 is now a common practice world-wide. Three children presented to our specialty clinic with respiratory complaints during protective face mask wearing. They were diagnosed as asthma and referred to our specialist clinic for further evaluation after asthma treatments were ineffective. Full details and a video clip demonstrating the effects of wearing the mask is presented for the first patient. The detailed evaluation confirmed the diagnosis of hyperventilation. Conclusions: In the current era of the daily use of masks, pediatricians should be aware of potential anxiety and hyperventilation while the mask is being worn, causing symptoms that mimic common respiratory disorders, such as asthma.